Journal of Gambling Studies

, Volume 28, Issue 4, pp 623–636 | Cite as

Neural Correlates of Pathological Gamblers Preference for Immediate Rewards During the Iowa Gambling Task: An fMRI Study

Original Paper

Abstract

The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.

Keywords

Pathological gambling fMRI Iowa gambling task Reward 

References

  1. American Psychiatric Association. (2003). Diagnostic and statistical manual of mental disorders, 4th edn. Text Revision. Washington, DC: American Psychiatric Association.Google Scholar
  2. Babor, T. F., Brown, J., & DelBoca, F. K. (1990). Validity of self-reports in applied research on addictive behaviors: Fact or fiction? Behavioral Assessment, 12, 5–31.Google Scholar
  3. Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. Neuroimage, 45, 143–150.CrossRefGoogle Scholar
  4. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.CrossRefGoogle Scholar
  5. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.Google Scholar
  6. Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437.Google Scholar
  7. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.CrossRefGoogle Scholar
  8. Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389.CrossRefGoogle Scholar
  9. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690–1705.CrossRefGoogle Scholar
  10. Bechara, A., & Martin, E. (2004). Impaired decision-making related to working memory deficits in substance addicts. Neuropsychology, 18, 152–162.CrossRefGoogle Scholar
  11. Bolla, K., Eldreth, D., London, E. D., Kiehl, K. A., Mouratidis, M., Contoreggi, C., et al. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage, 19, 1085–1094.CrossRefGoogle Scholar
  12. Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience at monetary gains and losses. Neuron, 30, 619–639.CrossRefGoogle Scholar
  13. Brewer, J. A., & Potenza, M. N. (2008). The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochemical Pharmacology, 7(5), 63–75.CrossRefGoogle Scholar
  14. Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253–262.CrossRefGoogle Scholar
  15. Cavedini, P., Riboldi, G., Keller, R., D’Annucci, A., & Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 51, 334–341.CrossRefGoogle Scholar
  16. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58, 787–795.CrossRefGoogle Scholar
  17. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic response to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072–3077.Google Scholar
  18. Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. F. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: A parametric functional magnetic resonance imaging study. Journal of Neuroscience, 23, 303–307.Google Scholar
  19. Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., et al. (2002). Decision-making in a risk-taking task: A PET study. Neuropsychopharmacology, 26(5), 682–691.CrossRefGoogle Scholar
  20. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 11.CrossRefGoogle Scholar
  21. First, M. B., Spitzer, R. L., Gibbon, M., & William, J. B. W. (1988). Structured clinical iInterview for DSM-IV aAxis I disorders–patient edition (SCID-I/P, version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute.Google Scholar
  22. Forbush, K. T., Shaw, M., Graeber, M. A., Hovick, L., Meyer, V. J., Moser, D. J., et al. (2008). Neuropsychological characteristics and personality traits in pathological gambling. CNS Spectrums, 13, 306–315.Google Scholar
  23. Fukui, H., Murai, T., Fukuyama, H., Hayashi, T., & Hanakawa, T. (2005). Functional activity related to risk anticipation during performance of the Iowa gambling task. Neuroimage, 24, 253–259.CrossRefGoogle Scholar
  24. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.CrossRefGoogle Scholar
  25. Goudriaan, A., Oosterlaan, J., Beursc, E., & Van den Brink, W. (2004). Pathological gambling: A comprehensive review of biobehavioral findings. Neuroscience and Biobehavioral Reviews, 28, 123–141.CrossRefGoogle Scholar
  26. Goudriaan, A., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006a). Neurocognitive functions in pathological gambling: A comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction, 101, 534–547.CrossRefGoogle Scholar
  27. Goudriaan, A., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006b). Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug and Alcohol Dependence, 84, 231–239.CrossRefGoogle Scholar
  28. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance on a laboratory test of decision-making. Neuropsycholgia, 38, 1180–1187.CrossRefGoogle Scholar
  29. Grant, J. E., Steinberg, M. A., Kim, S. W., Rounsaville, B. J., & Potenza, M. N. (2004). Preliminary validity and reliability testing of a structured clinical interview for pathological gambling. Psychiatry Research, 128, 79–88.CrossRefGoogle Scholar
  30. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom test for nicotine dependence: A revision of the Fagerstrom tolerance questionnaire. British Journal of Addiction, 86, 1119–1127.CrossRefGoogle Scholar
  31. Hollander, E., Pallanti, S., Baldini Rossi, N., Sood, E., Baker, B. R., & Buchsbaum, M. S. (2005). Imaging monetary reward in pathological gamblers. World Journal of Biological Psychiatry, 6(2), 113–120.CrossRefGoogle Scholar
  32. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry, 162, 03–13.CrossRefGoogle Scholar
  33. Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event related fMRI. Neuroimage, 18, 263–272.CrossRefGoogle Scholar
  34. Koob, G. (2007). The neurobiology of addiction: A neuroadaptational view relevant for diagnosis. Addiction, 101(Suppl 1), 23–30.Google Scholar
  35. Lakey, C. E., Goodie, A. S., & Campbell, W. K. (2007). Frequent card playing and pathological gambling: The utility of the Georgia gambling task and the Iowa gambling task for predicting pathology. Journal of Gambling Studies, 23, 285–297.CrossRefGoogle Scholar
  36. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188.Google Scholar
  37. Li, X., Lu, Z. L., D’Arbembeau, A., Ng, M., & Bechara, A. (2010). The Iowa Gambling Task in fMRI images. Human Brain Mapping, 31, 410–423.Google Scholar
  38. Linnet, J., Moller, A., Peterson, E., Gjedde, A., & Doudet, D. (2010). Dopamine release in ventral striatum during Iowa gambling task performance is associated with increased excitement levels in pathological gambling. Addiction, 106, 383–390.CrossRefGoogle Scholar
  39. Linnet, J., Moller, A., Peterson, E., Gjedde, A., & Doudet, D. (2011). Inverse association between dopaminergic neurotransmission and Iowa gambling task performance in pathological gamblers and healthy controls. Scandinavian Journal of Psychology, 52, 28–34.CrossRefGoogle Scholar
  40. Linnet, J., Rojskjaer, S., Nygaard, J., & Maher, B. A. (2006). Episodic chasing in pathological gamblers using the Iowa gambling task. Scandinavian Journal of Psychology, 47, 43–49.CrossRefGoogle Scholar
  41. McClure, S. M., York, M. K., & Montague, P. R. (2004). The neural substrates of reward processing in humans: The modern role of fMRI. Neuroscientist, 10, 260–268.CrossRefGoogle Scholar
  42. Petry, N. M. (2001). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482–487.CrossRefGoogle Scholar
  43. Petry, N. M. (2005). Pathological gambling: Etiology, comorbidity, and treatments. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  44. Pomerleau, C. S., Carton, S. M., Lutzke, M. L., Flessland, K. A., & Pomerleau, O. F. (1994). Reliability of the Fagerstrom tolerance questionnaire and the Fagerstrom test for nicotine dependence. Addictive Behaviors, 19, 33–39.CrossRefGoogle Scholar
  45. Potenza, M. N. (2006). Should addictive disorders include non-substance related conditions? Addiction, 101(Suppl 1), 142–151.CrossRefGoogle Scholar
  46. Potenza, N. M. (2008). The neurobiology of pathological gambling and drug addiction: An overview and new findings. Philosophical Transactions of the Royal Society B, 363, 3181–3189.CrossRefGoogle Scholar
  47. Potenza, M. N., Leung, H. C., Blumberg, H. P., Peterson, B. S., Fulbright, R. K., Lacadie, C. M., et al. (2003a). An fMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry, 160(11), 1990–1994.CrossRefGoogle Scholar
  48. Potenza, M. N., Steinberg, M. A., Skudlarski, P., Fulbright, R. K., Lacadie, C. M., Wilber, M. K., et al. (2003b). Gambling urges in pathological gambling: A functional magnetic resonance imaging study. Archives of General Psychiatry, 60(8), 828–836.CrossRefGoogle Scholar
  49. Reuter, J., Raedler, T., Rose, M., Hand, I., Glascher, J., & Buchel, C. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147–148.CrossRefGoogle Scholar
  50. Roca, M., Torralva, T., Lopez, P., Cetkovitch, M., Clark, L., & Manes, F. (2008). Executive functions in pathologic gamblers selected in an ecologic setting. Cognitive and Behavioral Neurology, 21, 1–4.CrossRefGoogle Scholar
  51. Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.CrossRefGoogle Scholar
  52. Tanabe, J., Thompson, L., Claus, E., Dalwani, M., Hutchison, K., & Banish, M. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision making. Human Brain Mapping, 28, 1276–1286.CrossRefGoogle Scholar
  53. van Holst, R. J., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2010). Why gamblers fail to win: A review of cognitive and neuroimaging findings in pathological gambling. Neuroscience and Biobehavioral Reviews, 34, 87–107.CrossRefGoogle Scholar
  54. Verdejo-Garcia, A., Benbrook, A., Funderburk, F., David, P., Cadet, J. L., & Bolla, K. I. (2007). The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa gambling task. Drug and Alcohol Dependence, 90, 2–11.CrossRefGoogle Scholar
  55. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42, 509–517.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of CalgaryCalgaryCanada
  2. 2.Departments of Radiology and Clinical NeurosciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations