Advertisement

Tighter McCormick relaxations through subgradient propagation

  • Jaromił Najman
  • Alexander MitsosEmail author
Article

Abstract

Tight convex and concave relaxations are of high importance in deterministic global optimization. We present a method to tighten relaxations obtained by the McCormick technique. We use the McCormick subgradient propagation (Mitsos et al. in SIAM J Optim 20(2):573–601, 2009) to construct simple affine under- and overestimators of each factor of the original factorable function. Then, we minimize and maximize these affine relaxations in order to obtain possibly improved range bounds for every factor resulting in possibly tighter final McCormick relaxations. We discuss the method and its limitations, in particular the lack of guarantee for improvement. Subsequently, we provide numerical results for benchmark cases found in the MINLPLib2 library and case studies presented in previous works, where the McCormick technique appears to be advantageous, and discuss computational efficiency. We see that the presented algorithm provides a significant improvement in tightness and decrease in computational time, especially in the case studies using the reduced space formulation presented in (Bongartz and Mitsos in J Glob Optim 69:761–796, 2017).

Keywords

Global optimization McCormick Range reduction MAiNGO 

Mathematics Subject Classification

49M20 49M37 65K05 90C26 

Notes

Acknowledgements

We would like to thank Dr. Benoît Chachuat for providing MC++ v2.0 and Dominik Bongartz and Artur Schweidtmann for providing numerical case studies. We appreciate the thorough review and helpful comments provided by the anonymous reviewers and editors which resulted in an improved manuscript. This project has received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Improved McCormick Relaxations for the efficient Global Optimization in the Space of Degrees of Freedom MA 1188/34-1.

References

  1. 1.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex minlp. Optim. Method Softw. 24(4–5), 597–634 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bendtsen, C., Staunin, O.: FADBAD++, A Flexible C++ Package for Automatic Differentiation. Version 2.1 (2012). http://www.fadbad.com. Accessed 18 Octob 2016
  4. 4.
    Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont (2015)zbMATHGoogle Scholar
  5. 5.
    Bertsekas, D.P., Nedic, A., Ozdaglar, A.E., et al.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)zbMATHGoogle Scholar
  6. 6.
    Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor models and McCormick–Taylor models. J. Glob. Optim. 57(1), 75–114 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bongartz, D., Mitsos, A.: Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations. J. Glob. Optim. 69, 761–796 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bongartz, D., Mitsos, A.: Deterministic global flowsheet optimization - between equation-oriented and sequential-modular. AIChE J 65, 1022–1034 (2019)CrossRefGoogle Scholar
  9. 9.
    Bongartz, D., Najman, J., Sass, S., Mitsos, A.: MAiNGO: McCormick-based algorithm for mixed-integer nonlinear global optimization. In: Technical Report, Process Systems Engineering (AVT.SVT), RWTH Aachen University (2018). http://permalink.avt.rwth-aachen.de/?id=729717. Accessed 7 Jan 2019
  10. 10.
    Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical programming problems prior to applying the simplex algorithm. Math. Program. 8(1), 54–83 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chachuat, B., Houska, B., Paulen, R., Peri’c, N., Rajyaguru, J., Villanueva, M.E.: Set-theoretic approaches in analysis, estimation and control of nonlinear systems. IFAC PapersOnLine 48(8), 981–995 (2015)CrossRefGoogle Scholar
  12. 12.
    Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: Proceedings of VI SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing), pp. 9–18. Citeseer (1993)Google Scholar
  13. 13.
    Cornelius, H., Lohner, R.: Computing the range of values of real functions with accuracy higher than second order. Computing 33(3–4), 331–347 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    International Business Machines Corporation:: IBM ILOG CPLEX v12.8. Armonk (2009)Google Scholar
  15. 15.
    De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gleixner, A.M., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound tightening. J. Glob. Optim. 67(4), 731–757 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Trans. Math. Softw. 43(2), 15:1–15:5 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hamed, A.S.E.D., McCormick, G.P.: Calculation of bounds on variables satisfying nonlinear inequality constraints. J. Glob. Optim. 3(1), 25–47 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization. Math. Program. 52(1), 227–254 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Johnson, S.: The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt. Accessed Feb 2018
  22. 22.
    Kannan, R., Barton, P.I.: The cluster problem in constrained global optimization. J. Glob. Optim. 69, 629–676 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kannan, R., Barton, P.I.: Convergence-order analysis of branch-and-bound algorithms for constrained problems. J. Glob. Optim. 71, 753–813 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kearfott, B., Du, K.: The Cluster Problem in Global Optimization: The Univariate Case, pp. 117–127. Springer, Vienna (1993)zbMATHGoogle Scholar
  25. 25.
    Khan, K.A.: Subtangent-based approaches for dynamic set propagation. In: 57th IEEE Conference on Decision and Control (2018)Google Scholar
  26. 26.
    Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Locatelli, M., Schoen, F.: Global optimization: theory, algorithms, and applications. In: SIAM, (2013)Google Scholar
  28. 28.
    Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard-Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)CrossRefGoogle Scholar
  29. 29.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I-convex underestimating problems. Math. Program. 10, 147–175 (1976)zbMATHCrossRefGoogle Scholar
  30. 30.
    McCormick, G.P.: Nonlinear Programming: Theory, Algorithms, and Applications. Wiley, New York (1983)zbMATHGoogle Scholar
  31. 31.
    Misener, R., Floudas, C.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Moore, R.E., Bierbaum, F.: Methods and applications of interval analysis. In: SIAM Studies in Applied and Numerical Mathematics, Society for Industrial and Applied Mathematics (1979)Google Scholar
  34. 34.
    Morrison, D., Jacobson, S., Sauppe, J., Sewell, E.: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning. Discret. Optim. 19, 79–102 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Najman, J., Bongartz, D., Tsoukalas, A., Mitsos, A.: Erratum to: multivariate McCormick relaxations. J. Glob. Optim. 68, 1–7 (2016)zbMATHGoogle Scholar
  36. 36.
    Najman, J., Mitsos, A.: Convergence order of mccormick relaxations of LMTD function in heat exchanger networks. In: Kravanja, Z., Bogataj, M. (eds.) 26th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, vol. 38, pp. 1605–1610. Elsevier, Amsterdam (2016)Google Scholar
  37. 37.
    Najman, J., Mitsos, A.: On tightness and anchoring of McCormick and other relaxations. J. Glob. Optim. (2017).  https://doi.org/10.1007/s10898-017-0598-6
  38. 38.
    Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13(3), 247–277 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Puranik, Y., Sahinidis, N.V.: Bounds tightening based on optimality conditions for nonconvex box-constrained optimization. J. Glob. Optim. 67(1–2), 59–77 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global NLP and MINLP optimization. Constraints 22, 1–39 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Halsted Press Chichester, New York (1984)zbMATHGoogle Scholar
  42. 42.
    Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)CrossRefGoogle Scholar
  43. 43.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Sahlodin, A., Chachuat, B.: Convex, concave relaxations of parametric odes using taylor models. Comput. Chem. Eng. 35(5), 844–857, : Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering-20), Ischia, Italy (2011)Google Scholar
  45. 45.
    Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob. Optim. 33(4), 541–562 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Schweidtmann, A.M., Mitsos, A.: Global deterministic optimization with artificial neural networks embedded. J. Optim. Theory Appl. (2018)Google Scholar
  47. 47.
    Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–606 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12(1), 1–36 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Smith, E.M., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, 791–796 (1997)CrossRefGoogle Scholar
  50. 50.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  51. 51.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim. 59, 633–662 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Method. Softw. 33(3), 563–593 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Wechsung, A.: Global optimization in reduced space. In: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (2014)Google Scholar
  56. 56.
    Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Glob. Optim. 58(3), 429–438 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Wechsung, A., Scott, J.K., Watson, H.A.J., Barton, P.I.: Reverse propagation of McCormick relaxations. J. Glob. Optim. 63(1), 1–36 (2015)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AVT - Aachener Verfahrenstechnik, Process Systems EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations