Advertisement

A stochastic goal programming model to derive stable cash management policies

  • Francisco Salas-MolinaEmail author
  • Juan A. Rodriguez-Aguilar
  • David Pla-Santamaria
Article

Abstract

In this paper, we consider cash management systems with multiple bank accounts described by a given particular relationship between accounts and by a linear state transition law. Since cash managers may simultaneously consider a number of possibly conflicting goals, we provide a general stochastic goal programming model that is able to handle multiple goals and also the inherent uncertainty introduced by expected cash flows. We describe in detail an instance of our general model that considers the optimization of three different criteria such as cost, risk and cash balance stability. We claim that cash balance stability is an interesting goal to deal with the inherent uncertainty of expected cash flows. We also provide useful instructions for cash managers to set the main parameters of our model in practice. Our model provides a systematic approach to multiobjective cash management that is ready to be implemented in decision support systems for cash management.

Keywords

Multiple criteria Multiple accounts Stochastic goal programming Uncertainty 

Notes

Acknowledgements

This work has been partially funded by Generalitat de Catalunya (2017 SGR 172), AI4EU (H2020-825619), LOGISTAR (H2020-769142).

References

  1. 1.
    Srinivasan, V., Kim, Y.H.: Deterministic cash flow management: state of the art and research directions. Omega 14(2), 145–166 (1986)CrossRefGoogle Scholar
  2. 2.
    da Costa M., Marcelo, B., Nagano, M.S., Sobreiro, V.A.: Stochastic cash flow management models: a literature review since the 1980s. In Decision Models in Engineering and Management, pp. 11–28. Springer International Publishing, (2015)Google Scholar
  3. 3.
    Bellman, R.: Dynamic Programming. Dover Publications, New York (1957)zbMATHGoogle Scholar
  4. 4.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena scientific, Belmont (2005)zbMATHGoogle Scholar
  5. 5.
    Murray, D.M., Yakowitz, S.J.: Constrained differential dynamic programming and its application to multireservoir control. Water Resour. Res. 15(5), 1017–1027 (1979)CrossRefGoogle Scholar
  6. 6.
    Yeh, W.W.-G.: Reservoir management and operations models: a state-of-the-art review. Water Resour. Res. 21(12), 1797–1818 (1985)CrossRefGoogle Scholar
  7. 7.
    Labadie, J.W.: Optimal operation of multireservoir systems: state-of-the-art review. J. Water Resour. Plan. Manag. 130(2), 93–111 (2004)CrossRefGoogle Scholar
  8. 8.
    Cembrano, G., Wells, G., Quevedo, J., Pérez, R., Argelaguet, R.: Optimal control of a water distribution network in a supervisory control system. Control Eng. Pract. 8(10), 1177–1188 (2000)CrossRefGoogle Scholar
  9. 9.
    Jalali, M.R., Afshar, A., Marino, M.A.: Multi-colony ant algorithm for continuous multi-reservoir operation optimization problem. Water Resour. Manag. 21(9), 1429–1447 (2007)CrossRefGoogle Scholar
  10. 10.
    Baccarin, S.: Optimal impulse control for a multidimensional cash management system with generalized cost functions. Eur. J. Oper. Res. 196(1), 198–206 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Salas-Molina, F.: Risk-sensitive control of cash management systems. Oper. Res. (2017).  https://doi.org/10.1007/s12351-017-0371-0 Google Scholar
  12. 12.
    Daellenbach, H.G.: A stochastic cash balance model with two sources of short-term funds. Int. Econ. Rev. 12(2), 250–256 (1971)CrossRefzbMATHGoogle Scholar
  13. 13.
    Stone, B.K.: The use of forecasts and smoothing in control limit models for cash management. Fin. Manag. 1(1), 72 (1972)Google Scholar
  14. 14.
    Salas-Molina, F., Martin, F.J., Rodriguez-Aguilar, J.A., Serrá, J., Arcos, J.L.: Empowering cash managers to achieve cost savings by improving predictive accuracy. Int. J. Forecast. 33(2), 403–415 (2017).  https://doi.org/10.1016/j.ijforecast.2016.11.002 CrossRefGoogle Scholar
  15. 15.
    Penttinen, M.J.: Myopic and stationary solutions for stochastic cash balance problems. Eur. J. Oper. Res. 52(2), 155–166 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Salas-Molina, F., Pla-Santamaria, D., Rodriguez-Aguilar, J.A.: A multi-objective approach to the cash management problem. Ann. Oper. Res. 267(1–2), 515–529 (2018a)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ballestero, E., Romero, C.: Multiple Criteria Decision Making and Its Applications to Economic Problems. Springer Science & Business Media, Berlin (1998)CrossRefGoogle Scholar
  18. 18.
    Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Charnes, A., Cooper, W.W.: Goal programming and multiple objective optimizations. Eur. J. Oper. Res. 1(1), 39–54 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ballestero, E.: Stochastic goal programming: a mean-variance approach. Eur. J. Oper. Res. 131(3), 476–481 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Abdelaziz, F.B., Aouni, B., Fayedh, R.E.: Multi-objective stochastic programming for portfolio selection. Eur. J. Oper. Res. 177(3), 1811–1823 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Aouni, B., Colapinto, C., La Torre, D.: Financial portfolio management through the goal programming model: current state-of-the-art. Eur. J. Oper. Res. 234(2), 536–545 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Salas-Molina, F., Pla-Santamaria, D., Rodríguez-Aguilar, J.A.: Empowering cash managers through compromise programming. In Financial Decision Aid Using Multiple Criteria, pp. 149–173. Springer (2018b)Google Scholar
  24. 24.
    Herrera-Cáceres, C.A., Ibeas, A.: Model predictive control of cash balance in a cash concentration and disbursements system. J. Frankl. Inst. 353(18), 4885–4923 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Dordretch (1995)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28(6–7), 971–983 (2004)CrossRefGoogle Scholar
  27. 27.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (1997)zbMATHGoogle Scholar
  28. 28.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B-141 (1970)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Simon, H.A.: A behavioral model of rational choice. Q. J. Econ. 69(1), 99–118 (1955)CrossRefGoogle Scholar
  30. 30.
    Gormley, F.M., Meade, N.: The utility of cash flow forecasts in the management of corporate cash balances. Eur. J. Oper. Res. 182(2), 923–935 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Romero, C.: Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford (1991)zbMATHGoogle Scholar
  32. 32.
    Jones, D., Tamiz, M., et al.: Practical Goal Programming, vol. 141. Springer, Berlin (2010)Google Scholar
  33. 33.
    Ballestero, E., Garcia-Bernabeu, A.: Portfolio selection with multiple time horizons: a mean variance-stochastic goal programming approach. INFOR Inf. Syst. Oper. Res. 50(3), 106–116 (2012)MathSciNetGoogle Scholar
  34. 34.
    Soyster, A.L.: Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)CrossRefzbMATHGoogle Scholar
  37. 37.
    Tyrrell Rockafellar, R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Fin. 26(7), 1443–1471 (2002)CrossRefGoogle Scholar
  38. 38.
    Saaty, T.L.: How to make a decision: the analytic hierarchy process. Interfaces 24(6), 19–43 (1994)CrossRefGoogle Scholar
  39. 39.
    Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universitat de ValènciaValenciaSpain
  2. 2.IIIA-CSICCerdanyolaSpain
  3. 3.Universitat Politècnica de ValènciaAlcoySpain

Personalised recommendations