Advertisement

Journal of Global Optimization

, Volume 74, Issue 4, pp 803–838 | Cite as

Critical nodes in interdependent networks with deterministic and probabilistic cascading failures

  • Alexander Veremyev
  • Konstantin Pavlikov
  • Eduardo L. Pasiliao
  • My T. Thai
  • Vladimir BoginskiEmail author
Article
  • 415 Downloads

Abstract

We consider optimization problems of identifying critical nodes in coupled interdependent networks, that is, choosing a subset of nodes whose deletion causes the maximum network fragmentation (quantified by an appropriate metric) in the presence of deterministic or probabilistic cascading failure propagations. We use two commonly considered network fragmentation metrics: total number of disabled nodes and total number of disabled pair-wise connectivities. First, we discuss computational complexity issues and develop linear mixed integer programming (MIP) formulations for the corresponding optimization problems in the deterministic case. We then extend these problems to the case with probabilistic failure propagations using Conditional Value-at-Risk measure. We develop a scenario-based linear MIP model and propose an exact Markov chain-based algorithm to solve these problems. Finally, we perform a series of computational experiments on synthetic and semi-synthetic networks and discuss some interesting insights that illustrate the properties of the proposed models.

Keywords

Combinatorial optimization Interdependent networks Cascading failures Critical nodes Vulnerability assessment Conditional value-at-risk 

Notes

Acknowledgements

This material is based upon work supported by the AFRL Mathematical Modeling and Optimization Institute. M.T. Thai’s and V. Boginski’s research is supported in part by NSF award EFRI-1441231.

References

  1. 1.
    Amin, M.: Toward secure and resilient interdependent infrastructures. J. Infrastruct. Syst. 8, 67 (2002)Google Scholar
  2. 2.
    Arulselvan, A., Commander, C., Elefteriadou, L., Pardalos, P.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Badanidiyuru, A., Kleinberg, R., Lee, H.: Approximating low-dimensional coverage problems. In: Proceedings of the 2012 Symposuim on Computational Geometry, pp. 161–170. ACM (2012)Google Scholar
  4. 4.
    Bak, P., Chen, K., Tang, C.: A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147(5–6), 297–300 (1990)Google Scholar
  5. 5.
    Barrett, C., Beckman, R., Channakeshava, K., Huang, F., Kumar, V., Marathe, A., Marathe, M., Pei, G.: Cascading failures in multiple infrastructures: from transportation to communication network. In: 2010 5th International Conference on Critical Infrastructure (CRIS), pp. 1–8 (2010). https://doi.org/10.1109/CRIS.2010.5617569
  6. 6.
    Bienstock, D.: Optimal control of cascading power grid failures. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 2166–2173 (2011). https://doi.org/10.1109/CDC.2011.6160415
  7. 7.
    Brummitt, C.D., DSouza, R.M., Leicht, E.: Suppressing cascades of load in interdependent networks. Proc. Natl. Acad. Sci. 109(12), E680–E689 (2012)Google Scholar
  8. 8.
    Buldyrev, S., Parshani, R., Paul, G., Stanley, H., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)Google Scholar
  9. 9.
    Buldyrev, S.V., Shere, N.W., Cwilich, G.A.: Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E 83(1), 016112 (2011)MathSciNetGoogle Scholar
  10. 10.
    Carreras, B.A., Newman, D.E., Gradney, P., Lynch, V.E., Dobson, I.: interdependent risk in interacting infrastructure systems. In: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, pp. 112–112. IEEE (2007)Google Scholar
  11. 11.
    Di Summa, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput. Optim. Appl. 53(3), 649–680 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dinh, T.N., Thai, M.T.: Precise structural vulnerability assessment via mathematical programming. In: Military Communications Conference, 2011-MILCOM 2011, pp. 1351–1356. IEEE (2011)Google Scholar
  13. 13.
    Dong, G., Gao, J., Du, R., Tian, L., Stanley, H.E., Havlin, S.: Robustness of network of networks under targeted attack. Phys. Rev. E 87, 052804 (2013)Google Scholar
  14. 14.
    Drossel, B., Schwabl, F.: Forest-fire model with immune trees. Phys. A Stat. Mech. Appl. 199(2), 183–197 (1993)Google Scholar
  15. 15.
    Dueñas-Osorio, L., Craig, J., Goodno, B.: Probabilistic response of interdependent infrastructure networks. In: 2nd Annual Meeting of the Asian-Pacific Network of Centers for Earthquake Engineering Research (ANCER). Honolulu, Hawaii, July pp. 28–30 (2004)Google Scholar
  16. 16.
    Dueñas-Osorio, L., Craig, J., Goodno, B., Bostrom, A.: Interdependent response of networked systems. J. Infrastruct. Syst. 13, 185 (2007)Google Scholar
  17. 17.
    Dueñas-Osorio, L., Craig, J.I., Goodno, B.J.: Seismic response of critical interdependent networks. Earthq. Eng. Struct. Dyn. 36(2), 285–306 (2007).  https://doi.org/10.1002/eqe.626 Google Scholar
  18. 18.
    Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
  19. 19.
    \(\text{FICO}^{{\rm TM}}\) Xpress Optimization Suite 7.6. http://www.fico.com/ (2013)
  20. 20.
    Gao, C., Li, X., Zhang, X., Li, K.: Network immunization for interdependent networks. J. Comput. Inf. Syst. 9(16), 6661–6668 (2013)Google Scholar
  21. 21.
    Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011).  https://doi.org/10.1103/PhysRevLett.107.195701 Google Scholar
  22. 22.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8(1), 40–48 (2011)Google Scholar
  23. 23.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  24. 24.
    Gong, J., Mitchell, J.E., Krishnamurthy, A., Wallace, W.A.: An Interdependent Layered Network Model for a Resilient Supply Chain. Omega 46, 104–116 (2013)Google Scholar
  25. 25.
    Huang, X., Gao, J., Buldyrev, S., Havlin, S., Stanley, H.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83(6), 065101 (2011)Google Scholar
  26. 26.
    Johansson, J., Hassel, H.: An approach for modelling interdependent infrastructures in the context of vulnerability analysis. Reliab. Eng. Syst. Saf. 95(12), 1335–1344 (2010)Google Scholar
  27. 27.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  28. 28.
    Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)Google Scholar
  30. 30.
    Krokhmal, P., Palmquist, J., Uryasev, S.: Portfolio optimization with conditional value-at-risk objective and constraints. J. Risk 4, 43–68 (2002)Google Scholar
  31. 31.
    Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Little, R.: Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 9(1), 109–123 (2002)Google Scholar
  33. 33.
    Luiijf, E., Nieuwenhuijs, A., Klaver, M., van Eeten, M., Cruz, E.: Empirical findings on critical infrastructure dependencies in Europe. In: Setola, R., Geretshuber, S. (eds.) Critical Information Infrastructure Security, Lecture Notes in Computer Science, vol. 5508, pp. 302–310. Springer, Berlin (2009)Google Scholar
  34. 34.
    Newman, D., Nkei, B., Carreras, B., Dobson, I., Lynch, V., Gradney, P.: Risk assessment in complex interacting infrastructure systems. In: HICSS ’05. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005, p. 63c (2005). https://doi.org/10.1109/HICSS.2005.524
  35. 35.
    Newman, D.E., Nkei, B., Carreras, B.A., Dobson, I., Lynch, V.E., Gradney, P.: Risk assessment in complex interacting infrastructure systems. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005. HICSS’05, pp. 63c–63c. IEEE (2005)Google Scholar
  36. 36.
    Nguyen, D., Shen, Y., Thai, M.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)Google Scholar
  37. 37.
    Oosten, M., Rutten, J., Spieksma, F.: Disconnecting graphs by removing vertices: a polyhedral approach. Stat. Neerl. 61(1), 35–60 (2007)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ouyang, M.: Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 121, 43–60 (2014)Google Scholar
  39. 39.
    Ouyang, M., Hong, L., Mao, Z.J., Yu, M.H., Qi, F.: A methodological approach to analyze vulnerability of interdependent infrastructures. Simul. Modell. Pract. Theory 17(5), 817–828 (2009). https://doi.org/10.1016/j.simpat.2009.02.001. http://www.sciencedirect.com/science/article/pii/S1569190X0900015X
  40. 40.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010)Google Scholar
  41. 41.
    Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., Havlin, S.: Inter-similarity between coupled networks. EPL (Europhys. Lett.) 92(6), 68002 (2010). http://stacks.iop.org/0295-5075/92/i=6/a=68002
  42. 42.
    Pavlikov, K.: Improved formulations for minimum connectivity network interdiction problems. Comput. Oper. Res. 97, 48–57 (2018)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Reed, D., Kapur, K., Christie, R.: Methodology for assessing the resilience of networked infrastructure. IEEE Sys. J. 3(2), 174–180 (2009).  https://doi.org/10.1109/JSYST.2009.2017396 Google Scholar
  44. 44.
    Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)Google Scholar
  45. 45.
    Rinaldi, S.M.: Modeling and simulating critical infrastructures and their interdependencies. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 2004, pp. 8–pp. IEEE (2004)Google Scholar
  46. 46.
    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)Google Scholar
  47. 47.
    Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26(7), 1443–1471 (2002)Google Scholar
  48. 48.
    Rockafellar, R.T., Uryasev, S.: The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci. 18(1), 33–53 (2013)MathSciNetGoogle Scholar
  49. 49.
    Santos, D., de Sousa, A., Monteiro, P.: Compact models for critical node detection in telecommunication networks. Electron. Notes Discrete Math. 64, 325–334 (2018)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Schneider, C.M., Yazdani, N., Araújo, N.A., Havlin, S., Herrmann, H.J.: Towards designing robust coupled networks. Sci. Rep. 3 (2013)Google Scholar
  51. 51.
    Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83(3), 036116 (2011)MathSciNetGoogle Scholar
  52. 52.
    Shen, S., Smith, J.C., Goli, R.: Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optim. 9(3), 172–188 (2012)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100(21), 218701 (2008)Google Scholar
  54. 54.
    Veremyev, A., Boginski, V., Pasiliao, E.L.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4), 1245–1259 (2014)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Veremyev, A., Sorokin, A., Boginski, V., Pasiliao, E.L.: Minimum vertex cover problem for coupled interdependent networks with cascading failures. Eur. J. Oper. Res. 232(3), 499–511 (2014)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Wang, S., Hong, L., Chen, X.: Vulnerability analysis of interdependent infrastructure systems: a methodological framework. Phys. A Stat. Mech. Appl. 391(11), 3323–3335 (2012)Google Scholar
  58. 58.
    Yagan, O., Qian, D., Zhang, J., Cochran, D.: Optimal allocation of interconnecting links in cyber-physical systems: interdependence, cascading failures, and robustness. IEEE Trans. Parallel Distrib. Syst. 23(9), 1708–1720 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Business and EconomicsUniversity of Southern DenmarkOdense MDenmark
  3. 3.Munitions DirectorateAir Force Research LaboratoryEglin AFBUSA
  4. 4.Department of Computer and Information Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations