Advertisement

Journal of Global Optimization

, Volume 74, Issue 4, pp 879–908 | Cite as

Joint production and transportation scheduling in flexible manufacturing systems

  • Dalila B. M. M. FontesEmail author
  • Seyed Mahdi Homayouni
Article

Abstract

This work proposes an integrated formulation for the joint production and transportation scheduling problem in flexible manufacturing environments. In this type of systems, parts (jobs) need to be moved around as the production operations required involve different machines. The transportation of the parts is typically done by a limited number of Automatic Guided Vehicles (AGVs). Therefore, machine scheduling and AGV scheduling are two interrelated problems that need to be addressed simultaneously. The joint production and transportation scheduling problem is formulated as a novel mixed integer linear programming model. The modeling approach proposed makes use of two sets of chained decisions, one for the machine and another for the AGVs, which are inter-connected through the completion time constraints both for machine operations and transportation tasks. The computational experiments on benchmark problem instances using a commercial software (Gurobi) show the efficiency of the modeling approach in finding optimal solutions.

Keywords

Flexible manufacturing system Integrated scheduling Mixed integer linear programming model 

References

  1. 1.
    Abdelmaguid, T.F., Nassef, A.O., Kamal, B.A., Hassan, M.F.: A hybrid ga/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Res. 42(2), 267–281 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baruwa, O.T., Piera, M.A.: Identifying fms repetitive patterns for efficient search-based scheduling algorithm: a colored petri net approach. J. Manuf. Syst. 35, 120–135 (2015)CrossRefGoogle Scholar
  3. 3.
    Baruwa, O.T., Piera, M.A.: A coloured petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Res. 54(16), 4773–4792 (2016)CrossRefGoogle Scholar
  4. 4.
    Bilge, Ü., Ulusoy, G.: A time window approach to simultaneous scheduling of machines and material handling system in an fms. Oper. Res. 43(6), 1058–1070 (1995)CrossRefzbMATHGoogle Scholar
  5. 5.
    Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J.: Scheduling tasks and vehicles in a flexible manufacturing system. Int. J. Flex. Manuf. Syst. 4(1), 5–16 (1991)CrossRefGoogle Scholar
  6. 6.
    Brucker, P., Burke, E.K., Groenemeyer, S.: A mixed integer programming model for the cyclic job-shop problem with transportation. Discrete Appl. Math. 160(13–14), 1924–1935 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deroussi, L., Gourgand, M., Tchernev, N.: A simple metaheuristic approach to the simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Res. 46(8), 2143–2164 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    El Khayat, G., Langevin, A., Riopel, D.: Integrated production and material handling scheduling using mathematical programming and constraint programming. Eur. J. Oper. Res. 175(3), 1818–1832 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gnanavel Babu, A., Jerald, J., Noorul Haq, A., Muthu Luxmi, V., Vigneswaralu, T.P.: Scheduling of machines and automated guided vehicles in fms using differential evolution. Int. J. Prod. Res. 48(16), 4683–4699 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    I Gurobi Optimization: Gurobi optimizer reference manual [internet] (2017)Google Scholar
  11. 11.
    Hurink, J., Knust, S.: Tabu search algorithms for job-shop problems with a single transport robot. Eur. J. Oper. Res. 162(1), 99–111 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kats, V., Levner, E.: A faster algorithm for 2-cyclic robotic scheduling with a fixed robot route and interval processing times. Eur. J. Oper. Res. 209(1), 51–56 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kumar, M.V.S., Janardhana, R., Rao, C.S.P.: Simultaneous scheduling of machines and vehicles in an fms environment with alternative routing. Int. J. Adv. Manuf. Technol. 53(1), 339–351 (2011)CrossRefGoogle Scholar
  15. 15.
    Lacomme, P., Larabi, M., Tchernev, N.: Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Econ. 143(1), 24–34 (2013)CrossRefGoogle Scholar
  16. 16.
    Le-Anh, T., De Koster, M.B.M.: A review of design and control of automated guided vehicle systems. Eur. J. Oper. Res. 171(1), 1–23 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lenstra, J.K., Kan, A.H.G.R.: Computational complexity of discrete optimization problems. Ann. Discrete Math. 4, 121–140 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lenstra, J.K., Kan, A.H.G.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981)CrossRefGoogle Scholar
  19. 19.
    Li, X., Fung, R.Y.K.: A mixed integer linear programming solution for single hoist multi-degree cyclic scheduling with reentrance. Eng. Optim. 46(5), 704–723 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nilsson, N.J.: Principles of Artificial Intelligence. Morgan Kaufmann, Burlington (1980)zbMATHGoogle Scholar
  21. 21.
    Nouri, H.E., Driss, O.B., Ghédira, K.: Hybrid metaheuristics for scheduling of machines and transport robots in job shop environment. Appl. Intell. 45(3), 808–828 (2016)CrossRefGoogle Scholar
  22. 22.
    Nouri, H.E., Driss, O.B., Ghédira, K.: Simultaneous scheduling of machines and transport robots in flexible job shop environment using hybrid metaheuristics based on clustered holonic multiagent model. Comput. Ind. Eng. 102, 488–501 (2016)CrossRefGoogle Scholar
  23. 23.
    Reddy, B.S.P., Rao, C.S.P.: A hybrid multi-objective ga for simultaneous scheduling of machines and agvs in fms. Int. J. Adv. Manuf. Technol. 31(5), 602–613 (2006)CrossRefGoogle Scholar
  24. 24.
    Ulusoy, G., Sivrikaya-Serifoglu, F., Bilge, U.: A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles. Comput. Oper. Res. 24(4), 335–351 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Vis, I.F.A.: Survey of research in the design and control of automated guided vehicle systems. Eur. J. Oper. Res. 170(3), 677–709 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yan, P., Chu, C., Yang, N., Che, A.: A branch and bound algorithm for optimal cyclic scheduling in a robotic cell with processing time windows. Int. J. Prod. Res. 48(21), 6461–6480 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang, Q., Manier, H., Manier, M.-A.: A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times. Comput. Oper. Res. 39(7), 1713–1723 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zheng, Y., Xiao, Y., Seo, Y.: A tabu search algorithm for simultaneous machine/agv scheduling problem. Int. J. Prod. Res. 52(19), 5748–5763 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artif. Intell. 170(4–5), 385–408 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dalila B. M. M. Fontes
    • 1
    • 3
    Email author
  • Seyed Mahdi Homayouni
    • 1
    • 2
  1. 1.LIAAD - INESC TECUniversidade do PortoPortoPortugal
  2. 2.Department of Industrial EngineeringLenjan Branch, Islamic Azad UniversityEsfahanIran
  3. 3.Faculdade de Economia da Universidade do PortoPortoPortugal

Personalised recommendations