Journal of Global Optimization

, Volume 74, Issue 4, pp 611–637 | Cite as

Tuning BARON using derivative-free optimization algorithms

  • Jianfeng Liu
  • Nikolaos Ploskas
  • Nikolaos V. SahinidisEmail author


Optimization solvers include many options that allow users to control algorithmic aspects that may have a considerable impact on solver performance. Tuning solver options is often necessary to reduce execution time and improve solution quality. Previous studies of solver tuning techniques have focused on mixed-integer linear programming and local nonlinear programming solvers. In this paper, we investigate the potential of tuning a global optimization solver for nonlinear and mixed-integer nonlinear programming problems. In particular, derivative-free optimization (DFO) algorithms are used to find optimal values for options of the global optimization solver BARON. A set of 126 problems from the GLOBALLib and MINLPLib collections are utilized in a computational study from which we conclude that tuning options can improve the default performance of BARON for individual problems and an entire library. Additionally, we present a systematic comparison of 27 DFO solvers in terms of their ability to improve the performance of the global solver. We find that several DFO implementations are much better than others in terms of finding optimal tuning parameters.


Solver tuning Derivative-free optimization Global optimization 


  1. 1.
    Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. Soc. Ind. Appl. Math. 17, 642–664 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21, 311–323 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baz, M., Hunsaker, B.: Automated Tuning of Optimization Software Parameters. Technical report. Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA (2007)Google Scholar
  6. 6.
    Baz, M., Hunsaker, B., Prokopyev, O.: How much do we “pay” for using default parameters? Comput. Optim. Appl. 48, 91–108 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib-A collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15, 114–119 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, W., Shao, Z., Wang, K., Chen, X., Biegler, L.T.: Random sampling-based automatic parameter tuning for nonlinear programming solvers. Ind. Eng. Chem. Res. 50, 3907–3918 (2011)CrossRefGoogle Scholar
  9. 9.
    Conn, A.R., Scheinberg, K., Toint, P.L.: On the convergence of derivative-free methods for unconstrained optimization. In: Buhmann, M.D., Iserles, A. (eds.) Approximation Theory and Optimization, Tribute to M. J. D. Powell, pp. 83–108. Cambridge University Press, Cambridge (1996)Google Scholar
  10. 10.
    Custódio, A.L., Dennis Jr., J.E., Vicente, L.N.: Using simplex gradients of nonsmooth functions in direct search methods. IMA J. Numer. Anal. 28, 770–784 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fan, S.S., Zahara, E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fowler, K.R., Reese, J.P., Kees, C.E., Dennis Jr., J.E., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: A comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31, 743–757 (2008)CrossRefGoogle Scholar
  13. 13.
    GLOBAL Library. Accessed 25 Feb 2018
  14. 14.
    Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–227 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Han, J., Kokkolaras, M., Papalambros, P.Y.: Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci. Technol. 5, 041014 (2008)CrossRefGoogle Scholar
  16. 16.
    Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: Howe, A., Holte, R.C. (eds.) Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1152–1157. AAAI Press, Menlo Park, CA (2007)Google Scholar
  17. 17.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. LNCS 6140, 186–202 (2010)Google Scholar
  18. 18.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configurations. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, pp. 507–523. Springer, Berlin (2011)Google Scholar
  19. 19.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an antomatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hvattum, L.M., Glover, F.: Finding local optima of high-dimensional functions using direct search methods. Eur. J. Oper. Res. 195, 31–45 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ingber, L.: Adaptive Simulated Annealing (ASA). Accessed 25 Feb 2018
  23. 23.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, M.L., Sahinidis, N.V., Shectman, J.P.: Planning of chemical process networks via global concave minimization. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, pp. 195–230. Kluwer Academic Publishers, Boston (1996)CrossRefGoogle Scholar
  25. 25.
    Mongeau, M., Karsenty, H., Rouzé, V., Hiriart-Urruty, J.B.: Comparison of public-domain software for black box global optimization. Optim. Methods Softw. 13, 203–226 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moré, J.M., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM. J. Optim. 20(1), 172–191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Kluwer Academic, Dordrecht (1994)CrossRefGoogle Scholar
  29. 29.
    Powell, M.J.D.: Recent research at Cambridge on radial basis functions. Technical report. Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1998)Google Scholar
  30. 30.
    Puranik, Y., Sahinidis, N.V.: Bounds tightening based on optimality conditions for nonconvex box-constrained optimization. J. Glob. Optim. 67, 59–77 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global NLP and MINLP optimization. Constraints 22, 338–376 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19, 551–566 (1995)CrossRefGoogle Scholar
  34. 34.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–139 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sahinidis, N.V.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. Lecture Notes in Computer Science, vol. 2861, pp. 1–16. Springer, Berlin (2003)CrossRefGoogle Scholar
  37. 37.
    Sahinidis, N.V.: BARON 15.5.0: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2015)Google Scholar
  38. 38.
    Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12, 1–36 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application for simplex designs in optimisation and evolutionary operation. Technometrics 4, 441–461 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Stewart, C.R.: Master’s thesis. Vriginia Commonwealth University, Richmond, VA (2010)Google Scholar
  41. 41.
    Tawarmalani, M., Ahmed, S., Sahinidis, N.V.: Product disaggregation and relaxations of mixed-integer rational programs. Optim. Eng. 3, 281–303 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes of l.s.c. functions. Math. Program. 93, 247–263 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Torczon, V.J.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Vaz, A.I.F.: PSwarm Home Page. Accessed 25 Feb 2018
  47. 47.
    Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 39, 197–219 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zorn, K., Sahinidis, N.V.: Global optimization of general nonconvex problems with intermediate bilinear substructures. Optim. Methods Softw. 29, 442–462 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations