Skip to main content
Log in

A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider a global optimization problem for a symmetric Lipschitz continuous function \(g:[a,b]^k\rightarrow {\mathbb {R}}\), whose domain \([a,b]^k\subset {\mathbb {R}}^k\) consists of k! hypertetrahedrons of the same size and shape, in which function g attains equal values. A global minimum can therefore be searched for in one hypertetrahedron only, but then this becomes a global optimization problem with linear constraints. Apart from that, some known global optimization algorithms in standard form cannot be applied to solving the problem. In this paper, it is shown how this global optimization problem with linear constraints can easily be transformed into a global optimization problem on hypercube \([0,1]^k\), for the solving of which an applied DIRECT algorithm in standard form is possible. This approach has a somewhat lower efficiency than known global optimization methods for symmetric Lipschitz continuous functions (such as SymDIRECT or DISIMPL), but, on the other hand, this method allows for the use of publicly available and well developed computer codes for solving a global optimization problem on hypercube \([0,1]^k\) (e.g. the DIRECT algorithm). The method is illustrated and tested on standard symmetric functions and very demanding center-based clustering problems for the data that have only one feature. An application to the image segmentation problem is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Mathematica–modules for the DIRECT algorithm and the SymDIRECT algorithm were done by Ivan Vazler, Department of Physics, University of Osijek, and can be found at: http://www.mathos.unios.hr/images/homepages/scitowsk/DIRECT-2.nb. Testing of algorithms were done on the computer with a 2.60 GHz Intel(R) Core(TM)i5 CPU with 4GB of RAM.

References

  1. Bagirov, A.M., Ugon, J.: An algorithm for minimizing clustering functions. Optimization 54, 351–368 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandyopadhyay, S., Saha, S.: Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  3. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy models and algorithms for pattern recognition and image processing. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified dividing rectangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151, 175–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Evtushenko, Y.G.: Numerical Optimization Techniques (Translations Series in Mathematics and Engineering). Springer, Berlin (1985)

    Book  Google Scholar 

  7. Finkel, D.E.: DIRECT Optimization Algorithm User Guide. Center for Research in Scientific Computation. North Carolina State University. http://www4.ncsu.edu/~ctk/Finkel_Direct/DirectUserGuide_pdf.pdf (2003)

  8. Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gablonsky, J.M.: DIRECT Version 2.0. Technical Report. Center for Research in Scientific Computation. North Carolina State University (2001)

  11. Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Glob. Optim. 57, 1193–1212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  13. Iyigun, C.: Probabilistic Distance Clustering. Ph.D. thesis. Graduate School – New Brunswick, Rutgers (2007)

  14. Iyigun, C., Ben-Israel, A.: A generalized Weiszfeld method for the multi-facility location problem. Op. Res. Lett. 38, 207–214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kogan, J.: Introduction to Clustering Large and High-dimensional Data. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  17. Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3, 303–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236, 4042–4054 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimisation algorithms. Numer. Algebra Control Optim. 2, 69–90 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leisch, F.: A toolbox for k-centroids cluster analysis. Comput. Stat. Data Anal. 51, 526–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marošević, T., Scitovski, R.: Multiple ellipse fitting by center-based clustering. Croat. Oper. Res. Rev. 6, 43–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R.: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 73, 132–141 (2014)

    Article  Google Scholar 

  23. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Paulavičius, R., Sergeyev, Y., Kvasov, D., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59, 545–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Paulavičius, R., Žilinskas, J.: Simpl. Glob. Optim. Springer, Berlin (2014a)

    Book  Google Scholar 

  26. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without Lipschitz constant. J. Glob. Optim. 59, 23–40 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10, 237–246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pintér, J. (ed.): Global Optimization: Scientific and Engineering Case Studies. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  30. Sabo, K., Scitovski, R.: An approach to cluster separability in a partition. Inf. Sci. 305, 208–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based \(l_1\)-clustering method. Optim. Lett. 7, 5–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schöbel, A., Scholz, D.: The big cube small cube solution method for multidimensional facility location problems. Comput. Oper. Res. 37, 115–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Scitovski, R., Marošević, T.: Multiple circle detection based on center-based clustering. Pattern Recognit. Lett. 52, 9–16 (2014)

    Article  Google Scholar 

  34. Scitovski, R., Sabo, K.: Analysis of the \(k\)-means algorithm in the case of data points occurring on the border of two or more clusters. Knowl. Based Syst. 57, 1–7 (2014)

    Article  Google Scholar 

  35. Scitovski, R., Scitovski, S.: A fast partitioning algorithm and its application to earthquake investigation. Comput. Geosci. 59, 124–131 (2013)

    Article  Google Scholar 

  36. Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Glob. Optim. 21, 317–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008)

    MATH  Google Scholar 

  39. Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2812–2828. Wiley, New York (2011)

    Google Scholar 

  40. Späth, H.: Cluster-Formation und Analyse. R. Oldenburg Verlag, München (1983)

    MATH  Google Scholar 

  41. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  42. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  43. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, Burlington (2009)

    MATH  Google Scholar 

  44. Vidović, I., Scitovski, R.: Center-based clustering for line detection and application to crop rows detection. Comput. Electron. Agric. 109, 212–220 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees and the journal editors for their careful reading of the paper and insightful comments that helped us to improve the paper. Especially, the author would like to thank Mrs. Ivanka Ferčec for significantly improving the use of English in the paper. This work was supported by the Croatian Science Foundation through research grants IP-2016-06-6545 and IP-2016-06-8350

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Scitovski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scitovski, R. A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set. J Glob Optim 68, 713–727 (2017). https://doi.org/10.1007/s10898-017-0510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0510-4

Keywords

Mathematics Subject Classification

Navigation