Journal of Global Optimization

, Volume 68, Issue 4, pp 713–727 | Cite as

A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set

  • Rudolf ScitovskiEmail author


In this paper, we consider a global optimization problem for a symmetric Lipschitz continuous function \(g:[a,b]^k\rightarrow {\mathbb {R}}\), whose domain \([a,b]^k\subset {\mathbb {R}}^k\) consists of k! hypertetrahedrons of the same size and shape, in which function g attains equal values. A global minimum can therefore be searched for in one hypertetrahedron only, but then this becomes a global optimization problem with linear constraints. Apart from that, some known global optimization algorithms in standard form cannot be applied to solving the problem. In this paper, it is shown how this global optimization problem with linear constraints can easily be transformed into a global optimization problem on hypercube \([0,1]^k\), for the solving of which an applied DIRECT algorithm in standard form is possible. This approach has a somewhat lower efficiency than known global optimization methods for symmetric Lipschitz continuous functions (such as SymDIRECT or DISIMPL), but, on the other hand, this method allows for the use of publicly available and well developed computer codes for solving a global optimization problem on hypercube \([0,1]^k\) (e.g. the DIRECT algorithm). The method is illustrated and tested on standard symmetric functions and very demanding center-based clustering problems for the data that have only one feature. An application to the image segmentation problem is also shown.


Symmetric function Lipschitz continuous function Global optimization DIRECT SymDIRECT DISIMPL Center-based clustering 

Mathematics Subject Classification

65K05 90C26 90C27 90C56 90C57 05E05 



The author would like to thank the referees and the journal editors for their careful reading of the paper and insightful comments that helped us to improve the paper. Especially, the author would like to thank Mrs. Ivanka Ferčec for significantly improving the use of English in the paper. This work was supported by the Croatian Science Foundation through research grants IP-2016-06-6545 and IP-2016-06-8350


  1. 1.
    Bagirov, A.M., Ugon, J.: An algorithm for minimizing clustering functions. Optimization 54, 351–368 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bandyopadhyay, S., Saha, S.: Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy models and algorithms for pattern recognition and image processing. Springer, Berlin (2005)zbMATHGoogle Scholar
  4. 4.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified dividing rectangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151, 175–190 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Evtushenko, Y.G.: Numerical Optimization Techniques (Translations Series in Mathematics and Engineering). Springer, Berlin (1985)CrossRefGoogle Scholar
  7. 7.
    Finkel, D.E.: DIRECT Optimization Algorithm User Guide. Center for Research in Scientific Computation. North Carolina State University. (2003)
  8. 8.
    Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gablonsky, J.M.: DIRECT Version 2.0. Technical Report. Center for Research in Scientific Computation. North Carolina State University (2001)Google Scholar
  11. 11.
    Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Glob. Optim. 57, 1193–1212 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)zbMATHGoogle Scholar
  13. 13.
    Iyigun, C.: Probabilistic Distance Clustering. Ph.D. thesis. Graduate School – New Brunswick, Rutgers (2007)Google Scholar
  14. 14.
    Iyigun, C., Ben-Israel, A.: A generalized Weiszfeld method for the multi-facility location problem. Op. Res. Lett. 38, 207–214 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kogan, J.: Introduction to Clustering Large and High-dimensional Data. Cambridge University Press, New York (2007)zbMATHGoogle Scholar
  17. 17.
    Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3, 303–318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236, 4042–4054 (2012a)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimisation algorithms. Numer. Algebra Control Optim. 2, 69–90 (2012b)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Leisch, F.: A toolbox for k-centroids cluster analysis. Comput. Stat. Data Anal. 51, 526–544 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Marošević, T., Scitovski, R.: Multiple ellipse fitting by center-based clustering. Croat. Oper. Res. Rev. 6, 43–53 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R.: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 73, 132–141 (2014)CrossRefGoogle Scholar
  23. 23.
    Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Paulavičius, R., Sergeyev, Y., Kvasov, D., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59, 545–567 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Paulavičius, R., Žilinskas, J.: Simpl. Glob. Optim. Springer, Berlin (2014a)CrossRefGoogle Scholar
  26. 26.
    Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without Lipschitz constant. J. Glob. Optim. 59, 23–40 (2014b)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10, 237–246 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pintér, J. (ed.): Global Optimization: Scientific and Engineering Case Studies. Springer, Berlin (2006)zbMATHGoogle Scholar
  29. 29.
    Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sabo, K., Scitovski, R.: An approach to cluster separability in a partition. Inf. Sci. 305, 208–218 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based \(l_1\)-clustering method. Optim. Lett. 7, 5–22 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schöbel, A., Scholz, D.: The big cube small cube solution method for multidimensional facility location problems. Comput. Oper. Res. 37, 115–122 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Scitovski, R., Marošević, T.: Multiple circle detection based on center-based clustering. Pattern Recognit. Lett. 52, 9–16 (2014)CrossRefGoogle Scholar
  34. 34.
    Scitovski, R., Sabo, K.: Analysis of the \(k\)-means algorithm in the case of data points occurring on the border of two or more clusters. Knowl. Based Syst. 57, 1–7 (2014)CrossRefGoogle Scholar
  35. 35.
    Scitovski, R., Scitovski, S.: A fast partitioning algorithm and its application to earthquake investigation. Comput. Geosci. 59, 124–131 (2013)CrossRefGoogle Scholar
  36. 36.
    Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Glob. Optim. 21, 317–341 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008)zbMATHGoogle Scholar
  39. 39.
    Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2812–2828. Wiley, New York (2011)Google Scholar
  40. 40.
    Späth, H.: Cluster-Formation und Analyse. R. Oldenburg Verlag, München (1983)zbMATHGoogle Scholar
  41. 41.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  42. 42.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, Burlington (2009)zbMATHGoogle Scholar
  44. 44.
    Vidović, I., Scitovski, R.: Center-based clustering for line detection and application to crop rows detection. Comput. Electron. Agric. 109, 212–220 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsijekOsijekCroatia

Personalised recommendations