Journal of Global Optimization

, Volume 68, Issue 1, pp 1–22 | Cite as

A branch and bound algorithm for quantified quadratic programming

  • F. Domes
  • A. Goldsztejn


The aim of this paper is to find the global solutions of uncertain optimization problems having a quadratic objective function and quadratic inequality constraints. The bounded epistemic uncertainties in the constraint coefficients are represented using either universal or existential quantified parameters and interval parameter domains. This approach allows to model non-controlled uncertainties by using universally quantified parameters and controlled uncertainties by using existentially quantified ones. While existentially quantified parameters could be equivalently considered as additional variables, keeping them as parameters allows maintaining the quadratic problem structure, which is essential for the proposed algorithm. The branch and bound algorithm presented in the paper handles both universally and existentially quantified parameters in a homogeneous way, without branching on their domains, and uses some dedicated numerical constraint programming techniques for finding a robust, global solution. Several examples clarify the theoretical parts and the tests demonstrate the usefulness of the proposed method.


Branch and bound Robust optimization Quadratic problem First order conditions 


  1. 1.
    Adjiman, C.S., Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A global optimization method \(\alpha \)BB for process design. Comput. Chem. Eng. 20, 419–424 (1996)CrossRefGoogle Scholar
  2. 2.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Computer Science and Applied Mathematics (1974)Google Scholar
  3. 3.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  4. 4.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88(3), 411–424 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben-Tal, A., Nemirovski, A.: On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM J. Optim. 12(3), 811–833 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: International Conference on Logic Programming, pp. 230–244 (1999)Google Scholar
  8. 8.
    Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl. 19(2), 261–281 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chabert, G., Jaulin, L.: Hull consistency under monotonicity. In: Principle and practices of constraint programming—CP2009, pp. 188–195 (2009)Google Scholar
  10. 10.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, Philadephia (1990)CrossRefzbMATHGoogle Scholar
  11. 11.
    Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34, 922–938 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Domes, F., Neumaier, A.: Quadratic constraint propagation. Constraints, pp. 404–429 (2010)Google Scholar
  13. 13.
    Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Global Optim. 61(2), 255–278 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Global Optim. 5, 253–265 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ghaoui, L.E., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ghaoui, L.E., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. Comput. Surv. 23(1), 5–48 (1991)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Goldsztejn, A., Domes, F., Chevalier, B.: First order rejection tests for multiple-objective optimization. J. Global Optim. 58(4), 653–672 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goualard, F.: GAOL 3.1.1: Not Just Another Interval Arithmetic Library, 4.0 edn. Laboratoire d’Informatique de Nantes-Atlantique, Nantes (2006)Google Scholar
  20. 20.
    Hansen, E.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  21. 21.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Berlin (2001)zbMATHGoogle Scholar
  22. 22.
    Jeyakumar, V., Li, G.: Robust solutions of quadratic optimization over single quadratic constraint under interval uncertainty. J. Global Optim. 55(2), 209–226 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kearfott, R., Nakao, M., Neumaier, A., Rump, S., Shary, S., van Hentenryck, P.: Standardized notation in interval analysis. In: Proceedings of XIII Baikal International School-seminar “Optimization methods and their applications” (Vol. 4, pp. 106–113). Irkutsk: Institute of Energy Systems, Baikal (2005)Google Scholar
  24. 24.
    Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83(1–3), 89–100 (1995)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kearfott, R.B.: Interval Computations: Introduction, Uses, and Resources. Euromath Bull. 2(1), 95–112 (1996)MathSciNetGoogle Scholar
  26. 26.
    Kearfott, R.B.: Interval computations, rigour and non-rigour in deterministic continuous global optimization. Optim. Methods Softw. 26(2), 259–279 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Knueppel, O.: PROFIL/BIAS: a fast interval library. Computing 53(3–4), 277–287 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10, 47–65 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lhomme, O.: Consistency techniques for numeric CSPS. IJCAI 1, 232–238 (1993)Google Scholar
  30. 30.
    Li, M., Gabriel, S., Shim, Y., Azarm, S.: Interval uncertainty-based robust optimization for convex and non-convex quadratic programs with applications in network infrastructure planning. Netw. Spat. Econ. 11, 159–191 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mitsos, A.: Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60(10–11), 1291–1308 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mitsos, A., Tsoukalas, A.: Global optimization of generalized semi-infinite programs via restriction of the right hand side. J. Global Optim. 61(1), 1–17 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Moore, R.: Interval Analysis. Prentice-Hall, Upper Saddle River (1966)zbMATHGoogle Scholar
  34. 34.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)zbMATHGoogle Scholar
  35. 35.
    Rump, S.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  36. 36.
    Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM J. Numer. Anal. 42(1), 383–408 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sherali, H., Adams, W.: A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publ., Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  38. 38.
    Tsoukalas, A., Rustem, B.: A feasible point adaptation of the blankenship and falk algorithm for semi-infinite programming. Optim. Lett. 5(4), 705–716 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wolfram Research Inc.: Mathematica 7.0. Wolfram Research Inc., Champaign (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.CNRS, IRCCYN (UMR 6597)NantesFrance

Personalised recommendations