Advertisement

Journal of Global Optimization

, Volume 68, Issue 1, pp 71–93 | Cite as

An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making

  • Kalyan Shankar Bhattacharjee
  • Hemant Kumar SinghEmail author
  • Tapabrata Ray
Article
  • 248 Downloads

Abstract

Multiple criteria decision making is a well established field encompassing aspects of search for solutions and selection of solutions in presence of more than one conflicting objectives. In this paper, we discuss an approach aimed towards the latter. The decision maker is presented with a limited number of Pareto optimal outcomes and is required to identify regions of interest for further investigation. The inherent sparsity of the given Pareto optimal outcomes in high dimensional space makes it an arduous task for the decision maker. To address this problem, an existing line of thought in literature is to generate a set of approximated Pareto optimal outcomes using piecewise linear interpolation. We present an approach within this paradigm, but one that delivers a comprehensive linearly interpolated set as opposed to its subset delivered by existing methods. We illustrate the advantage in doing so in comparison to stricter non-dominance conditions imposed in existing PAreto INTerpolation method. The interpolated set of outcomes delivered by the proposed approach are non-dominated with respect to the given Pareto optimal outcomes, and additionally the interpolated outcomes along uniformly distributed reference directions are presented to the decision maker. The errors in the given interpolations are also estimated in order to further aid decision making by establishing confidence in achieving true Pareto outcomes in their vicinity. The proposed approach for interpolation is computationally less demanding (for higher number of objectives) and also further amenable to parallelization. We illustrate the performance of the approach using six well established tri-objective test problems and two real-life examples. The problems span different types of fronts, such as convex, concave, mixed, degenerate, highlighting the wide applicability of the approach.

Keywords

Pareto front approximation Linear interpolation Decision making 

Notes

Acknowledgments

The third author would like to acknowledge the support from Australian Research Council (ARC) Future Fellowship. Thanks also to Markus Hartikainen for discussions regarding PAINT.

References

  1. 1.
    Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)CrossRefGoogle Scholar
  2. 2.
    Berezkin, V.E., Kamenev, G.K., Lotov, A.V.: Hybrid adaptive methods for approximating a nonconvex multidimensional pareto frontier. Comput. Math. Math. Phys. 46(11), 1918–1931 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Das, I., Dennis, J.E.: Normal-bounday intersection: a new method for generating pareto optimal points in multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the IEEE Congress on Evolutionary Computation. pp 825–830. IEEE, Honolulu, USA (2002)Google Scholar
  5. 5.
    Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto navigator for interactive nonlinear multiobjective optimization. OR Spectrum 32(1), 211–227 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eyvindson, K., Hartikainen, M., Kurttila, M.: Towards constructing a Pareto front approximation for use in interactive forest management planning. In: Proceedings of the International Conference on Implementation of DSS Tools into the Forestry Practice. Technical University in Zvolen (2013)Google Scholar
  7. 7.
    Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196(4), 879–893 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hartikainen, M., Lovison, A.: PAINT-SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization. J. Global Optim. 62(2), 243–261 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hartikainen, M., Miettinen, K.: A computationally inexpensive approach in multiobjective heat exchanger network synthesis. Proceedings of the International Conference on Applied Operational Research. 10, 99–109 (2010)Google Scholar
  10. 10.
    Hartikainen, M., Miettinen, K., Wiecek, M.M.: Constructing a Pareto front approximation for decision making. Math. Methods Oper. Res. 73(2), 209–234 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hartikainen, M., Miettinen, K., Wiecek, M.M.: PAINT: Pareto front interpolation for nonlinear multiobjective optimization. Comput. Optim. Appl. 52(3), 845–867 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hartikainen, M., Ojalehto, V.: Demonstrating the applicability of PAINT to computationally expensive real-life multiobjective optimization. arXiv preprint arXiv:1109.3411 (2011)
  13. 13.
    Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theory Appl. 110(3), 557–583 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hillermeier, C.: Nonlinear multiobjective optimization. Birkhäuser, Basel (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kuhn, T., Ruzika, S.: A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions. J. Global Optim. 1–20 (2016). doi: 10.1007/s10898-016-0425-5
  17. 17.
    Lotov, A.V., Miettinen, K.: Visualizing the Pareto frontier. In: Multiobjective optimization, Lecture Notes in Computer Science, vol 5252, pp 213–243. Springer (2008). doi: 10.1007/978-3-540-88908-3_9
  18. 18.
    Lovison, A.: Singular continuation: generating piecewise linear approximations to Pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lovison, A.: Global search perspectives for multiobjective optimization. J. Global Optim. 57(2), 385–398 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lovison, A., Hartikainen, M.: On generalizing Lipschitz global methods for multiobjective optimization. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol 9019, pp 264–278 (2015)Google Scholar
  21. 21.
    Martín, J., Bielza, C., Insua, D.R.: Approximating nondominated sets in continuous multiobjective optimization problems. Nav. Res. Logist. 52(5), 469–480 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Missoum, S., Ramu, P., Haftka, R.T.: A convex hull approach for the reliability-based design optimization of nonlinear transient dynamic problems. Comput. Methods Appl. Mech. Eng. 196(29), 2895–2906 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Monz, M.: Pareto Navigation—Interactive Multiobjective Optimisation and Its Application in Radiotherapy Planning. Ph.D. thesis, Department of Mathematics, Technical University of Kaiserslautern (Germany) (2006)Google Scholar
  24. 24.
    Monz, M., Küfer, K.H., Bortfeld, T.R., Thieke, C.: Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. Phys. Med. Biol. 53(4), 985–998 (2008)CrossRefGoogle Scholar
  25. 25.
    Payne, A.N.: Efficient approximate representation of bi-objective tradeoff sets. J. Frankl. Inst. 330(6), 1219–1233 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Rasmus, B., Anders, F.: An algorithm for approximating convex Pareto surfaces based on dual techniques. INFORMS J. Comput. 25(2), 377–393 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wiecek, M.M., Ehrgott, M., Engau, A.: Continuous multiobjective programming. In: Multiple Criteria Decision Analysis. International Series in Operations Research and Management Science, vol 233, pp 739–815. (2016). doi: 10.1007/978-1-4939-3094-4_18
  29. 29.
    Yang, J.B., Singh, M.G.: An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern. 24(1), 1–18 (1994)CrossRefGoogle Scholar
  30. 30.
    Žilinskas, A.: On the worst-case optimal multi-objective global optimization. Optim. Lett. 7(8), 1921–1928 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21(1), 89–98 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyThe University of New South WalesCanberraAustralia

Personalised recommendations