Journal of Global Optimization

, Volume 67, Issue 4, pp 731–757 | Cite as

Three enhancements for optimization-based bound tightening

  • Ambros M. Gleixner
  • Timo BertholdEmail author
  • Benjamin Müller
  • Stefan Weltge


Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17–19 % on average. Most importantly, more instances can be solved when using OBBT.


MINLP Optimization-based bound tightening Optimality-based bound tightening OBBT Propagation Bound tightening 



We want to thank Pietro Belotti and Domenico Salvagnin for fruitful discussions and their valuable comments on earlier versions of this paper, as well as all SCIP developers, especially Tobias Achterberg for creating SCIP and Stefan Vigerske for providing the MINLP core of SCIP. Furthermore, we would like to acknowledge the support of Gregor Hendel in the evaluation of the computational experiments, for which we used his Ipet tool [28]. This work was supported by the Research Campus Modal “Mathematical Optimization and Data Analysis Laboratories” funded by the German Ministry of Education and Research.

Supplementary material

10898_2016_450_MOESM1_ESM.pdf (407 kb)
Supplementary material 1 (pdf 406 KB)


  1. 1.
    Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007). URN:nbn:de:kobv:83-opus-16117Google Scholar
  2. 2.
    Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 449–481. Springer, Berlin (2013). doi: 10.1007/978-3-642-38189-8_18 CrossRefGoogle Scholar
  3. 3.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs–II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998). doi: 10.1016/S0098-1354(98)00218-X CrossRefGoogle Scholar
  4. 4.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9), 1769–1797 (2000). doi: 10.1002/aic.690460908 CrossRefGoogle Scholar
  5. 5.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: Finding cuts in the TSP (A preliminary report). Technical report 95-05, Center for Discrete Mathematics & Theoretical Computer Science (DIMACS) (1995)Google Scholar
  6. 6.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  7. 7.
    Belotti, P.: Bound reduction using pairs of linear inequalities. J. Glob. Optim. 56(3), 787–819 (2013). doi: 10.1007/s10898-012-9848-9 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points. In: W. Wu, O. Daescu (eds.) Combinatorial Optimization and Applications, Lecture Notes in Computer Science, vol. 6508, pp. 65–76. Springer, Berlin (2010). doi: 10.1007/978-3-642-17458-2_7
  9. 9.
    Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening. Technical report 3325, Optimization Online (2012).
  10. 10.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009). doi: 10.1080/10556780903087124 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Berthold, T.: Heuristic algorithms in global MINLP solvers. Ph.D. thesis, Technische Universität Berlin (2014)Google Scholar
  12. 12.
    Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 3–15 (2002). doi: 10.1287/opre. MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Caprara, A., Fischetti, M.: \(\{0, \tfrac{1}{2}\}\)-Chvátal-Gomory cuts. Math. Progr. 74(3), 221–235 (1996). doi: 10.1007/BF02592196 CrossRefzbMATHGoogle Scholar
  14. 14.
    Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Math. Progr. 125, 123–137 (2010). doi: 10.1007/s10107-008-0263-4 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4(4), 305–337 (1973). doi: 10.1016/0012-365X(73)90167-2 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    CMU-IBM Cyber-Infrastructure for MINLP.
  17. 17.
    COIN-OR: Couenne, an exact solver for nonconvex MINLPs.
  18. 18.
    COIN-OR: CppAD, a package for differentiation of CppAD  algorithms.
  19. 19.
    COIN-OR: Ipopt, Interior point optimizer.
  20. 20.
    Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954). doi: 10.1287/opre.2.4.393 MathSciNetGoogle Scholar
  21. 21.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91(2), 201–213 (2002). doi: 10.1007/s101070100263 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fügenschuh, A., Martin, A.: Computational integer programming and cutting planes. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, vol. 12, pp. 69–121. Elsevier, Amsterdam (2005). doi: 10.1016/S0927-0507(05)12002-7 Google Scholar
  23. 23.
    Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D.: Progress in presolving for mixed integer programming. Math. Progr. Comput. 7(4), 367–398 (2015). doi: 10.1007/s12532-015-0083-5 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gleixner, A., Vigerske, S.: Analyzing the computational impact of individual MINLP solver components. Talk at MINLP 2014, Carnegie Mellon University, Pittsburgh, PA, USA (2014).
  25. 25.
    Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Society 64, 275–278 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gomory, R.E.: An algorithm for the mixed integer problem. Technical report P-1885, The RAND Corporation (1960)Google Scholar
  27. 27.
    Grossmann, I.E., Sahinidis, N.V. (eds.): Special issue on mixed integer programming and its application to engineering, part I. Optim. Eng. 4(1–2) (2002).
  28. 28.
    Hendel, G.: Empirical analysis of solving phases in mixed integer programming. Master’s thesis, Technische Universität Berlin (2014). URN:nbn:de:0297-zib-54270Google Scholar
  29. 29.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  30. 30.
    Huang, W.: Operative planning of water supply networks by mixed integer nonlinear programming. Master’s thesis, Freie Universität Berlin (2011)Google Scholar
  31. 31.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Progr. Comput. 3(2), 103–163 (2011). doi: 10.1007/s12532-011-0025-9 CrossRefGoogle Scholar
  32. 32.
    LaGO—Lagrangian Global Optimizer.
  33. 33.
    Lodi, A., Nogales-Gómez, A., Belotti, P., Fischetti, M., Monaci, M., Salvagnin, D., Bonami, P.: Indicator constraints in mixed-integer programming. Talk at SCIP Workshop 2014, Zuse Institute Berlin, Germany (2014).
  34. 34.
    Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Computers & Chemical Engineering 21(4), 351–369 (1997). doi: 10.1016/S0098-1354(96)00282-7 CrossRefGoogle Scholar
  35. 35.
    Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49(3), 363–371 (2001). doi: 10.1287/opre.49.3.363.11211 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Progr. B 10(1), 147–175 (1976). doi: 10.1007/BF01580665 CrossRefzbMATHGoogle Scholar
  37. 37.
  38. 38.
    Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Progr. 136(1), 155–182 (2012). doi: 10.1007/s10107-012-0555-6 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57, 3–50 (2013). doi: 10.1007/s10898-012-9874-7 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014). doi: 10.1007/s10898-014-0166-2 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Nannicini, G., Belotti, P., Lee, J., Linderoth, J., Margot, F., Wächter, A.: A probing algorithm for MINLP with failure prediction by SVM. In: T. Achterberg, J.C. Beck (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6697, pp. 154–169. Springer, Berlin (2011). doi: 10.1007/978-3-642-21311-3_15
  42. 42.
    Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Progr. 46(1–3), 379–390 (1990). doi: 10.1007/BF01585752 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004). doi: 10.1017/S0962492904000194 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Nowak, I., Vigerske, S.: LaGO: a (heuristic) branch and cut algorithm for nonconvex MINLPs. Cent. Eur. J. Oper. Res. 16(2), 127–138 (2008). doi: 10.1007/s10100-007-0051-x MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957). doi: 10.1002/j.1538-7305.1957.tb01515.x CrossRefGoogle Scholar
  46. 46.
    Quesada, I., Grossmann, I.E.: Global optimization algorithm for heat exchanger networks. Ind. Eng. Chem. Res. 32(3), 487–499 (1993). doi: 10.1021/ie00015a012 CrossRefGoogle Scholar
  47. 47.
    Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6, 39–76 (1995). doi: 10.1007/BF01106605 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995). doi: 10.1016/0098-1354(94)00097-2 CrossRefGoogle Scholar
  49. 49.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996). doi: 10.1007/BF00138689 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Savelsbergh, M.W.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6(4), 445–454 (1994). doi: 10.1287/ijoc.6.4.445 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    SCIP—solving constraint integer programs.
  52. 52.
    Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999). doi: 10.1016/S0098-1354(98)00286-5 CrossRefGoogle Scholar
  53. 53.
    SoPlex—the Sequential object-oriented simPlex.
  54. 54.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). doi: 10.1137/0201010 MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Progr. 99, 563–591 (2004). doi: 10.1007/s10107-003-0467-6 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103(2), 225–249 (2005). doi: 10.1007/s10107-005-0581-8 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2013). URN:nbn:de:kobv:11-100208240Google Scholar
  58. 58.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–57 (2006). doi: 10.1007/s10107-004-0559-y MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar
  60. 60.
    Williams, H.P.: A reduction procedure for linear and integer programming models. In: Redundancy in Mathematical Programming, Lecture Notes in Economics and Mathematical Systems, vol. 206, pp. 87–107. Springer, Berlin (1983). doi: 10.1007/978-3-642-45535-3_9
  61. 61.
    Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technische Universität Berlin (1996). URN:nbn:de:0297-zib-5386Google Scholar
  62. 62.
    Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–249 (1999). doi: 10.1023/A:1008312714792 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ambros M. Gleixner
    • 1
  • Timo Berthold
    • 2
    Email author
  • Benjamin Müller
    • 1
  • Stefan Weltge
    • 3
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.Fair Isaac Germany GmbH, c/o Zuse Institute BerlinBerlinGermany
  3. 3.Institute for Operations Research, ETH ZürichZürichSwitzerland

Personalised recommendations