Journal of Global Optimization

, Volume 66, Issue 4, pp 769–790 | Cite as

Scatter search for the bandpass problem

  • Jesús Sánchez-Oro
  • Manuel Laguna
  • Rafael Martí
  • Abraham Duarte
Article
  • 164 Downloads

Abstract

We tackle a combinatorial problem that consists of finding the optimal configuration of a binary matrix. The configuration is determined by the ordering of the rows in the matrix and the objective function value is associated with a value B, the so-called bandpass number. In the basic version of the problem, the objective is to maximize the number of non-overlapping blocks containing B consecutive cells with a value of one in each column of the matrix. We explore variants of this basic problem and use them to test heuristic strategies within the scatter search framework. An existing library of problem instances is used to perform scientific testing of the proposed search procedures to gain insights that may be valuable in other combinational optimization settings. We also conduct competitive testing to compare outcomes with methods published in the literature and to improve upon previous results.

Keywords

Bandpass problem Scatter search Path relinking Telecommunications Metaheuristics 

Notes

Acknowledgments

This research was partially supported by the Ministerio de Economía y Competitividad of Spain (Project Number TIN2015-65460-C2-P) and the Comunidad de Madrid (Project Number S2013/ICE-2894).

References

  1. 1.
    Babayev, V., Bell, G.I., Nuriyev, U.G.: The bandpass problem: combinatorial optimization and library of problems. J. Combin. Optim. 18(2), 151–172 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berberler, M.E., Gürsoy, A.: Genetic algorithm approach for bandpass problem. In: Kasimbeyli R., Dinçer C., Özpeynirci S., Sakalauskas L., (eds.) 24th Mini EURO Conference on Continuous Optimization and Information-Based Technologies in the Financial Sector (MEC EurOPT 2010), pp. 201–206. Vilnius Gediminas Technical University Publishing House Technika, İzmir (2010)Google Scholar
  3. 3.
    Campos, V., Martí, R., Sánchez-Oro, J., Duarte, A.: GRASP with path relinking for the orienteering problem. J. Oper Res. Soc. 65(2), 1800–1813 (2014)Google Scholar
  4. 4.
    Das, A., Roberts, M.: Metric distances of permutations. www.cra.org/Activities/craw_archive/dmp/awards/2004/Das/paper.ps. (2004)
  5. 5.
    Duarte, A., Martí, R., Glover, F., Gortázar, F.: Hybrid scatter tabu search for unconstrained global optimization. Ann. Oper. Res. 183(1), 95–123 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Duarte, A., Sánchez-Oro, J., Resende, M.G.C., Glover, F., Martí, R.: GRASP with exterior path relinking for differential dispersion minimization. Inf. Sci. 296(1), 46–60 (2015)Google Scholar
  7. 7.
    Duarte, A., Martí, R.: Tabu search and grasp for the maximum diversity problem. Eur. J. Oper. Res. 178(1), 71–84 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gallego, M., Duarte, A., Laguna, M., Martí, R.: Hybrid heuristics for the maximum diversity problem. Comput. Optim. Appl. 44(3), 411–426 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gallego, M., Laguna, M., Martí, R., Duarte, A.: Tabu search with strategic oscillation for the maximally diverse grouping problem. J. Oper. Res. Soc. 64(5), 724–734 (2013)Google Scholar
  12. 12.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)CrossRefGoogle Scholar
  13. 13.
    Glover, F.: A template for scatter search and path relinking. Lecture Notes in Computer Science, 1363, 1–51 (1998)Google Scholar
  14. 14.
    Glover, F.: Exterior path relinking for zero-one optimization. Int. J. Appl. Metaheur. Comput. 5(3), 1–8Google Scholar
  15. 15.
    Glover, F., Laguna, M.: Tabu Search. Springer, New York (1997)CrossRefMATHGoogle Scholar
  16. 16.
    Goralski, W.J.: SONET, a Guide to Synchronous Optical Networks. McGraw-Hill, New York (1997)Google Scholar
  17. 17.
    Gürsoy, A., Nuriyev, U.G.: Genetic algorithm for multi bandpass problem and library of problems. In: Proceedings of the IV International Conference on Problems of Cybernetics and Informatics (PCI), Section I, Information and Communication Technologies, Baku, Azerbaijan, Sept 12–14, 134–138 (2012)Google Scholar
  18. 18.
    Kaminow, I.P., Saleh, A.A.M., Thomas, R.E., Chan, V.W.S., Stevens, M.L.: A wideband all-optical WDM network. IEEE J. Sel. Areas Commun. 14(5), 780–799 (1996)CrossRefGoogle Scholar
  19. 19.
    Kurt, M., Kutucu, H., Gürsoy, A., Nuriyev, U.: The optimization of the bandpass lengths in the multi-bandpass problem. In: Proceedings of the Seventh International Conference on Management Science and Engineering Management: Focused on Electrical and Information Technology, Xu, J., Fry, J. A., Lev, B., Hajiyev, A. (eds.) (1): 115–123. Springer, Berlin (2014)Google Scholar
  20. 20.
    Laguna, M., Martí, R.: Scatter Search: Methodology and Implementations in C. Kluwer, Boston (2003)CrossRefMATHGoogle Scholar
  21. 21.
    Li, Z., Lin, G.: The three column bandpass problem is solvable in linear time. Theor. Comput. Sci. 412(4–5), 281–299 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lin, G.: On the bandpass problem. J. Combin. Optim. 22(1), 71–77 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Martí, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem. INFORMS J. Comput. 21(1), 26–38 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Nuriyev, U.G., Kutucu, H., Kurt, M.: Mathematical models of the bandpass problem and OrderMatic computer game. Math. Comput. Model. 53, 1282–1288 (2011)CrossRefMATHGoogle Scholar
  26. 26.
    Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective. Morgan Kaufmann, San Francisco (1998)Google Scholar
  28. 28.
    Resende, M., Martí, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max–min diversity problem. Comput. Oper. Res. 37, 498–508 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sánchez-Oro, J., Laguna, M., Duarte, A., Martí, R.: Scatter search for the profile minimization problem. Networks. 65(1), 10–21 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jesús Sánchez-Oro
    • 1
  • Manuel Laguna
    • 2
  • Rafael Martí
    • 3
  • Abraham Duarte
    • 1
  1. 1.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain
  2. 2.Leeds School of BusinessUniversity of Colorado at BoulderBoulderUSA
  3. 3.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain

Personalised recommendations