Advertisement

Journal of Global Optimization

, Volume 66, Issue 3, pp 585–593 | Cite as

The Lyapunov rank of extended second order cones

  • Roman SznajderEmail author
Article

Abstract

In this paper, we investigate the structure of Lyapunov-like transformations on the extended second order cone, considered as a multivariate version of topheavy cone with respect to an arbitrary norm in a Euclidean space. As a by-product, we compute the Lyapunov rank of the extended second order cone. We also show the irreducibility of such a cone.

Keywords

Extended second order cone Irreducibility Lyapunov rank Lyapunov-like transformation Proper cone 

Mathematics Subject Classification

90C33 17C20 17C55 

Notes

Acknowledgments

I wish to thank the referee, whose questions helped me localize a gap in the proof of Theorem 1. I am grateful to Dr. M.S. Gowda for turning my attention to the paper [10], and for the comments which contributed to the final shape of the proof of Theorem 1.

References

  1. 1.
    Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  2. 2.
    Gowda, M.S., Tao, J.: On the bilinearity rank of a proper cone and Lyapunov-like transformations. Math. Prog. 147, 155–170 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gowda, M.S., Trott, D.: On the irreducibility, Lyapunov rank, and automorphisms of special BishopPhelps cones. J. Math. Anal. Appl. 419, 172–184 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Loewy, R., Schneider, H.: Indecomposable cones. Linear Algebra Appl. 11, 235–245 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Németh, S.Z., Zhang, G.: Extended Lorentz cones and mixed complementarity problems. J. Global Optim. 62(3), 443–457 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Orlitzky, M., Gowda, M.S.: An improved bound for the Lyapunov rank of a proper cone. Optim. Lett. 10, 11–17 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Rudolf, G., Noyan, N., Papp, D., Alizadeh, F.: Bilinear optimality constraints for the cone of positive polynomials. Math. Prog. Ser. B 129, 5–31 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Schneider, H., Vidyasagar, M.: Cross-positive matrices. SIAM J. Numer. Anal. 7, 508–519 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tao, J., Gowda, M.S.: A representation theorem for Lyapunov-like transformations on Euclidean Jordan algebras. Int. Game Theory Rev. 15(04), 1340034 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsBowie State UniversityBowieUSA

Personalised recommendations