Advertisement

Journal of Global Optimization

, Volume 67, Issue 4, pp 759–786 | Cite as

Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization

  • Christoph Buchheim
  • Claudia D’Ambrosio
Article

Abstract

We introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard approaches in global optimization are based on convex relaxations. Thanks to the fact that only simple bound constraints are present, minimizing the separable underestimator can be done very quickly. The underestimators are computed monomial-wise after the original polynomial has been shifted. We show that such valid underestimators exist and their degree can be bounded when the degree of the polynomial objective function is bounded, too. For the quartic case, all optimal monomial underestimators are determined analytically. We implemented and tested the branch-and-bound algorithm where these underestimators are hardcoded. The comparison against standard global optimization and polynomial optimization solvers clearly shows that our method outperforms the others, the only exception being the binary case where, though, it is still competitive. Moreover, our branch-and-bound approach suffers less in case of dense polynomial objective function, i.e., in case of polynomials having a large number of monomials. This paper is an extended and revised version of the preliminary paper [4].

Keywords

Polynomial optimization Mixed-integer nonlinear programming Separable underestimators 

Notes

Acknowledgments

The work is partially supported by the EU grant FP7-PEOPLE-2012—ITN No. 316647 “Mixed-Integer Nonlinear Optimization”. The second author gratefully acknowledges the partial financial support under Grant ANR 12-JS02-009-01 “ATOMIC”.

References

  1. 1.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed integer programs. Math. Progr. 131(1), 381–401 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buchheim, C., D’Ambrosio, C.: Box-constrained mixed-integer polynomial optimization using separable underestimators. In: Integer Programming and Combinatorial Optimization—17th International Conference, IPCO 2014, LNCS, vol. 8494, pp. 198–209 (2014)Google Scholar
  5. 5.
    Buchheim, C., Rinaldi, G.: Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM J. Optim. 18(4), 1398–1413 (2007). doi: 10.1137/050646500 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buchheim, C., Traversi, E.: Separable non-convex underestimators for binary quadratic programming. In: 12th International Symposium on Experimental Algorithms—SEA 2013, LNCS, vol. 7933, pp. 236–247 (2013)Google Scholar
  7. 7.
    Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Progr. 141(1–2), 435–452 (2013). doi: 10.1007/s10107-012-0534-y MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buchheim, C., De Santis, M., Palagi, L., Piacentini, M.: An exact algorithm for nonconvex quadratic integer minimization using ellipsoidal relaxations. SIAM J. Optim. 23(3), 1867–1889 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Progr. Comput. 2(1), 1–19 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17, 97–106 (2012)MathSciNetGoogle Scholar
  11. 11.
    COUENNE (v. 0.4) projects.coin-or.org/CouenneGoogle Scholar
  12. 12.
    D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: a practical overview. 4OR 9(4), 329–349 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated practical overview. Annals OR 204(1), 301–320 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dua, V.: Mixed integer polynomial programming. Comput. Chem. Eng. 72, 387–394 (2015)CrossRefGoogle Scholar
  15. 15.
    Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822–843 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lasserre, J.B., Thanh, T.P.: Convex underestimators of polynomials. J. Glob Optim. 56, 1–25 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2), 503–526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. Algorithmic and quantitative real algebraic geometry. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 60, 83–99 (2001)Google Scholar
  20. 20.
    Rosenberg, I.G.: Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes de Recherche Opérationelle 17, 71–74 (1975)MathSciNetzbMATHGoogle Scholar
  21. 21.
  22. 22.
    Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 23, 731–734 (1987)CrossRefzbMATHGoogle Scholar
  23. 23.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103, 225–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Progr. 102(3), 559–575 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Fakultät für MathematikTU DortmundDortmundGermany
  2. 2.LIX CNRS (UMR7161)École PolytechniquePalaiseau CedexFrance

Personalised recommendations