Journal of Global Optimization

, Volume 67, Issue 3, pp 621–630 | Cite as

A polynomially solvable case of the pooling problem

  • Natashia Boland
  • Thomas Kalinowski
  • Fabian Rigterink
Short Communication

Abstract

Answering a question of Haugland, we show that the pooling problem with one pool and a bounded number of inputs can be solved in polynomial time by solving a polynomial number of linear programs of polynomial size. We also give an overview of known complexity results and remaining open problems to further characterize the border between (strongly) NP-hard and polynomially solvable cases of the pooling problem.

Keywords

Pooling problem Computational complexity Polynomial-time algorithm 

Notes

Acknowledgments

This research was supported by the ARC Linkage Grant No. LP110200524, Hunter Valley Coal Chain Coordinator (hvccc.com.au) and Triple Point Technology (tpt.com). We would like to thank the two anonymous referees for their helpful comments which improved the quality of the paper.

References

  1. 1.
    Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56(3), 917–937 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Boland, N., Kalinowski, T., Rigterink, F.: Discrete flow pooling problems in coal supply chains. In: Weber, T., McPhee, M.J., Anderssen, R.S. (eds.) MODSIM2015, 21st International Congress on Modelling and Simulation, pp. 1710–1716. Modelling and Simulation Society of Australia and New Zealand, Gold Coast (2015)Google Scholar
  6. 6.
    Boland, N., Kalinowski, T., Rigterink, F.: New multi-commodity flow formulations for the pooling problem. J. Glob. Optim. Adv. Online Publ. (2016). doi:10.1007/s10898-016-0404-x Google Scholar
  7. 7.
    Boland, N., Kalinowski, T., Rigterink, F., Savelsbergh, M.: A special case of the generalized pooling problem arising in the mining industry. Optimization Online e-prints. (2015). http://www.optimization-online.org/DB_HTML/2015/07/5025.html
  8. 8.
    Buck, R.C.: Partition of space. Am. Math. Mon. 50(9), 541–544 (1943)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    de Witt, C.W., Lasdon, L.S., Waren, A.D., Brenner, D.A., Melhem, S.A.: OMEGA: an improved gasoline blending system for Texaco. Interfaces 19(1), 85–101 (1989)CrossRefGoogle Scholar
  10. 10.
    Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gupte, A., Ahmed, S., Dey, S. S., Cheon, M. S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim., to appear. Preprint: http://www.optimization-online.org/DB_HTML/2015/04/4883.html
  12. 12.
    Haugland, D.: The hardness of the pooling problem. In: Casado, L.G., García, I., Hendrix, E.M.T. (eds.) Proceedings of the XII Global Optimization Workshop Mathematical and Applied Global Optimization, MAGO 2014, pp. 29–32. Málaga, Spain (2014)Google Scholar
  13. 13.
    Haugland, D.: The computational complexity of the pooling problem. J. Glob. Optim. 64(2), 199–215 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Haugland, D., Hendrix, E.M.T.: Pooling problems with polynomial-time algorithms. J. Optim. Theory Appl. (2016). doi:10.1007/s10957-016-0890-5 MathSciNetMATHGoogle Scholar
  15. 15.
    Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)CrossRefGoogle Scholar
  16. 16.
    Rigby, B., Lasdon, L.S., Waren, A.D.: The evolution of Texaco’s blending systems: from OMEGA to StarBlend. Interfaces 25(5), 64–83 (1995)CrossRefGoogle Scholar
  17. 17.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and its Applications, vol. 65. Springer, New York (2002)MATHGoogle Scholar
  18. 18.
    Visweswaran, V.: MINLP: applications in blending and pooling problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 2114–2121. Springer, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Natashia Boland
    • 1
  • Thomas Kalinowski
    • 2
  • Fabian Rigterink
    • 2
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.The University of NewcastleCallaghanAustralia

Personalised recommendations