Journal of Global Optimization

, Volume 67, Issue 3, pp 621–630 | Cite as

A polynomially solvable case of the pooling problem

  • Natashia Boland
  • Thomas Kalinowski
  • Fabian Rigterink
Short Communication


Answering a question of Haugland, we show that the pooling problem with one pool and a bounded number of inputs can be solved in polynomial time by solving a polynomial number of linear programs of polynomial size. We also give an overview of known complexity results and remaining open problems to further characterize the border between (strongly) NP-hard and polynomially solvable cases of the pooling problem.


Pooling problem Computational complexity Polynomial-time algorithm 



This research was supported by the ARC Linkage Grant No. LP110200524, Hunter Valley Coal Chain Coordinator ( and Triple Point Technology ( We would like to thank the two anonymous referees for their helpful comments which improved the quality of the paper.


  1. 1.
    Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56(3), 917–937 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boland, N., Kalinowski, T., Rigterink, F.: Discrete flow pooling problems in coal supply chains. In: Weber, T., McPhee, M.J., Anderssen, R.S. (eds.) MODSIM2015, 21st International Congress on Modelling and Simulation, pp. 1710–1716. Modelling and Simulation Society of Australia and New Zealand, Gold Coast (2015)Google Scholar
  6. 6.
    Boland, N., Kalinowski, T., Rigterink, F.: New multi-commodity flow formulations for the pooling problem. J. Glob. Optim. Adv. Online Publ. (2016). doi: 10.1007/s10898-016-0404-x Google Scholar
  7. 7.
    Boland, N., Kalinowski, T., Rigterink, F., Savelsbergh, M.: A special case of the generalized pooling problem arising in the mining industry. Optimization Online e-prints. (2015).
  8. 8.
    Buck, R.C.: Partition of space. Am. Math. Mon. 50(9), 541–544 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    de Witt, C.W., Lasdon, L.S., Waren, A.D., Brenner, D.A., Melhem, S.A.: OMEGA: an improved gasoline blending system for Texaco. Interfaces 19(1), 85–101 (1989)CrossRefGoogle Scholar
  10. 10.
    Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gupte, A., Ahmed, S., Dey, S. S., Cheon, M. S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim., to appear. Preprint:
  12. 12.
    Haugland, D.: The hardness of the pooling problem. In: Casado, L.G., García, I., Hendrix, E.M.T. (eds.) Proceedings of the XII Global Optimization Workshop Mathematical and Applied Global Optimization, MAGO 2014, pp. 29–32. Málaga, Spain (2014)Google Scholar
  13. 13.
    Haugland, D.: The computational complexity of the pooling problem. J. Glob. Optim. 64(2), 199–215 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Haugland, D., Hendrix, E.M.T.: Pooling problems with polynomial-time algorithms. J. Optim. Theory Appl. (2016). doi: 10.1007/s10957-016-0890-5 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)CrossRefGoogle Scholar
  16. 16.
    Rigby, B., Lasdon, L.S., Waren, A.D.: The evolution of Texaco’s blending systems: from OMEGA to StarBlend. Interfaces 25(5), 64–83 (1995)CrossRefGoogle Scholar
  17. 17.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and its Applications, vol. 65. Springer, New York (2002)zbMATHGoogle Scholar
  18. 18.
    Visweswaran, V.: MINLP: applications in blending and pooling problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 2114–2121. Springer, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Natashia Boland
    • 1
  • Thomas Kalinowski
    • 2
  • Fabian Rigterink
    • 2
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.The University of NewcastleCallaghanAustralia

Personalised recommendations