Journal of Global Optimization

, Volume 66, Issue 3, pp 511–534

Global versus local search: the impact of population sizes on evolutionary algorithm performance

  • Thomas Weise
  • Yuezhong Wu
  • Raymond Chiong
  • Ke Tang
  • Jörg Lässig
Article

Abstract

In the field of Evolutionary Computation, a common myth that “An Evolutionary Algorithm (EA) will outperform a local search algorithm, given enough runtime and a large-enough population” exists. We believe that this is not necessarily true and challenge the statement with several simple considerations. We then investigate the population size parameter of EAs, as this is the element in the above claim that can be controlled. We conduct a related work study, which substantiates the assumption that there should be an optimal setting for the population size at which a specific EA would perform best on a given problem instance and computational budget. Subsequently, we carry out a large-scale experimental study on 68 instances of the Traveling Salesman Problem with static population sizes that are powers of two between \((1+2)\) and \(({262144}+{524288})\) EAs as well as with adaptive population sizes. We find that analyzing the performance of the different setups over runtime supports our point of view and the existence of optimal finite population size settings.

Keywords

Population size Traveling salesman problem Experimentation Statistics Evolutionary computation 

References

  1. 1.
    Abu Bakar, N., Mahadzir, M.F.: The impact of population size on knowledge acquisition in genetic algorithms paradigm: finding solutions in the game of sudoku. In: Baharom, F., Mahmuddin, M., Yusof Y, Ishak, W.H.W., Saip, M.A. (eds.) Knowledge Management: Theory, Research, and Practice. Proceedings of the 5th International Conference on Knowledge Management (KMICe’10), Universiti Utara Malaysia (UUM), pp. 644–648. Sintok, Kedah, Malaysia (2010)Google Scholar
  2. 2.
    Angeline, P.J.: Subtree crossover: building block engine or macromutation? In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Iba, H., Riolo, R.L. (eds.) Proceedings of the Second Annual Conference on Genetic Programming (GP’97), pp. 9–17. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1997)Google Scholar
  3. 3.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2007)Google Scholar
  4. 4.
    Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: Corne, D.W., Michalewicz, Z., McKay, R.I., Eiben ÁE, Fogel, D.B., Fonseca, C.M., Raidl, G.R., Tan, K.C., Zalzala, A.M.S. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05), pp. 1769–1776. IEEE Computer Society, Piscataway, NJ, USA (2005). doi:10.1109/CEC.2005.1554902
  5. 5.
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Computational Intelligence Library. Oxford University Press Inc, New York (1997)Google Scholar
  6. 6.
    Bentley, P.J., Kumar, S.P.: The ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., Daida, J.M., Eiben, Á.E., Garzon, M.H., Honavar, V., Jakiela, M.J., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), pp. 35–43. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  7. 7.
    Berend, D., Korach, E., Zucker, S.: Tabu search for the BWC problem. J. Glob. Optim. 54(4), 649–667 (2012). doi:10.1007/s10898-011-9783-1 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Beyer, H., Schwefel, H.: Evolution strategies—a comprehensive introduction. Nat Comput Int J 1(1), 3–52 (2002). doi:10.1023/A:1015059928466 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Birbil, Şİ., Fang, S., Sheu, R.: On the convergence of a population-based global optimization algorithm. J. Glob. Optim. 30(2–3), 301–318 (2004). doi:10.1007/s10898-004-8270-3 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Boddy, M.S., Dean, T.L.: Solving time-dependent planning problems. Tech. Rep. CS-89-03, Brown University, Department of Computer Science, Providence, RI, USA (1989)Google Scholar
  11. 11.
    Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size reduction and three strategies. Spacecom 15(11), 2157–2174 (2011). doi:10.1007/s00500-010-0644-5 Google Scholar
  12. 12.
    Campana, E.F., Fasano, G., Pinto, A.: Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization. J. Glob. Optim. 48(3), 347–397 (2010). doi:10.1007/s10898-009-9493-0 MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chen, D., Lee, C., Park, C., Mendes, P.: Parallelizing simulated annealing algorithms based on high-performance computer. J. Glob. Optim. 39(2), 261–289 (2007). doi:10.1007/s10898-007-9138-0 MATHCrossRefGoogle Scholar
  14. 14.
    Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be unhelpful in evolutionary algorithms. Theor. Comput. Sci. 436, 54–70 (2012). doi:10.1016/j.tcs.2011.02.016 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) Proceedings of the 11th International Conference on Parallel Problem Solving From Nature, Part 2 (PPSN’10-2), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 6239, pp. 300–309 (2010). doi:10.1007/978-3-642-15871-1_31
  16. 16.
    Costa, J.C., Tavares, R., Da Rosa, A.C.: An experimental study on dynamic random variation of population size. In: IEEE International Conference on Systems, Man, and Cybernetics - Human Communication and Cybernetics (SMC’99), IEEE Computer Society, Piscataway, NJ, USA (1999). doi:10.1109/ICSMC.1999.814161
  17. 17.
    De Jong, K.A.: Evolutionary Computation: A Unified Approach, Bradford Books, vol. 4. MIT Press, Cambridge (2006)Google Scholar
  18. 18.
    Devert, A., Weise, T., Tang, K.: A study on scalable representations for evolutionary optimization of ground structures. Evol. Comput. 20(3), 453–472 (2012). doi:10.1162/EVCO_a_00054 CrossRefGoogle Scholar
  19. 19.
    Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. Theor. Comput. Sci. (2010). doi:10.1016/j.tcs.2010.10.035 MathSciNetMATHGoogle Scholar
  20. 20.
    Eiben ÁE, Marchiori, E., Valkó, V.A.: Evolutionary algorithms with on-the-fly population size adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria JA, Rowe, J.E., Tiño, P., Kabán, A., Schwefel, H. (eds.) Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 3242/2004, pp. 41–50 (2008). doi:10.1007/978-3-540-30217-9_5
  21. 21.
    Fernandes, C., Da Rosa, A.C.: Self-regulated population size in evolutionary algorithms. In: Runarsson, T.P., Beyer, H., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Proceedings of 9th International Conference on Parallel Problem Solving from Nature (PPSN IX), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 4193/2006, pp. 920–929 (2006). doi:10.1007/11844297_93
  22. 22.
    Fredman, M., Johnson, D., McGeoch, L., Ostheimer, G.: Data structures for traveling salesman. J. Algorithms 18, 432–479 (1995). doi:10.1006/jagm.1995.1018 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Gao, Y.: Population size and sampling complexity in genetic algorithms. Tech. rep., University of Alberta, Department of Computer Science, Edmonton, Alberta, Canada (2003)Google Scholar
  24. 24.
    Glover, F.W.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989). doi:10.1287/ijoc.1.3.190 MATHCrossRefGoogle Scholar
  25. 25.
    Glover, F.W.: Tabu search—part II. ORSA J. Comput. 2(1), 190–206 (1990). doi:10.1287/ijoc.2.1.4 CrossRefGoogle Scholar
  26. 26.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co. Inc, Boston (1989). doi:10.1007/3-540-32444-5 MATHGoogle Scholar
  27. 27.
    Goldberg, D.E., Richardson, J.T.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms and their Applications (ICGA’87), pp. 41–49. Lawrence Erlbaum Associates Inc, Mahwah, NJ, USA (1987)Google Scholar
  28. 28.
    Gotshall, S., Rylander, B.: Optimal population size and the genetic algorithm. In: Proceedings of the 2002 WSEAS International Conferences: 2nd IMCCAS; 2nd ISA; 2nd SOSM; 4th MEM, World Scientific and Engineering Academy and Society (WSEAS), pp. 2151–2155. Greece, Athens (2002)Google Scholar
  29. 29.
    Gutin, G.Z., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Variations, Combinatorial Optimization, vol. 12. Kluwer Academic Publishers, Norwell (2002). doi:10.1007/b101971
  30. 30.
    Hallam, J.W., Akman, O., Akman, F.: Genetic algorithms with shrinking population size. Comput. Stat. 25(4), 691–705 (2010). doi:10.1007/s00180-010-0197-1 MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking: experimental setup. Tech. rep., Université Paris Sud, Institut National de Recherche en Informatique et en Automatique (INRIA) Futurs, Équipe TAO, Orsay, France (2012)Google Scholar
  32. 32.
    Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor, MI, USA (1997)Google Scholar
  33. 33.
    He, J., Yao, X.: From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 495–511 (2002). doi:10.1109/TEVC.2002.800886 CrossRefGoogle Scholar
  34. 34.
    Helsgaun, K.: General k-opt submoves for the Lin–Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009). doi:10.1007/s12532-009-0004-6 MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Hidalgo, J.I.: Balancing the computation effort in genetic algorithms. In: Corne, D.W., Michalewicz Z, McKay, R.I., Eiben ÁE, Fogel, D.B., Fonseca, C.M., Raidl, G.R., Tan, K.C., Zalzala AMS (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05), IEEE Computer Society, Piscataway, NJ, USA, pp. 1645–1652 (2005). doi:10.1109/CEC.2005.1554886
  36. 36.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)MATHGoogle Scholar
  37. 37.
    Hoos, H.H., Stützle, T.: Evaluating las vegas algorithms: pitfalls and remedies. In: Cooper, G.F., Moral, S. (eds.) Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98), Morgan Kaufmann Publishers Inc., San Francisco, C.A., USA, pp. 238–245, also published as Technical Report “Forschungsbericht AIDA-98-02“ of the Fachgebiet Intellektik, Fachbereich Informatik, Technische Hochschule Darmstadt, Germany (1998)Google Scholar
  38. 38.
    Hu, T., Banzhaf, W.: Nonsynonymous to synonymous substitution ratio \(k_a/k_s\): measurement for rate of evolution in evolutionary computation. In: Proceedings of 10th International Conference on Parallel Problem Solving from Nature (PPSN X), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 5199/2008, pp. 448–457 (2008). doi:10.1007/978-3-540-87700-4_45
  39. 39.
    Hu, T., Banzhaf, W.: The role of population size in rate of evolution in genetic programming. In: Vanneschi, L., Gustafson, S.M., Moraglio, A., de Falco, I., Ebner, M. (eds.) Proceedings of the 12th European Conference on Genetic Programming (EuroGP’09), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 5481/2009, pp. 85–96 (2009)Google Scholar
  40. 40.
    Hu, T., Harding, S., Banzhaf, W.: Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm. Genet. Program. Evol. Mach. 11(2), 205–225 (2010). doi:10.1007/s10710-010-9105-2 CrossRefGoogle Scholar
  41. 41.
    Hutter, M., Legg, S.: Fitness uniform optimization. IEEE Trans. Evol. Comput. 10(5), 568–589 (2006). doi:10.1109/TEVC.2005.863127 CrossRefGoogle Scholar
  42. 42.
    Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not. In: Mendel, J.M., Omari, T., Yao, X. (eds.) The First IEEE Symposium on Foundations of Computational Intelligence (FOCI’07), IEEE Computer Society, Piscataway, NJ, USA, pp. 25–32 (2007). doi:10.1109/FOCI.2007.372143
  43. 43.
    Jansen, T., Wegener, I.: On the utility of populations in evolutionary algorithms. In: Spector, L., Goodman, E.D., Wu, A.S., Langdon, W.B., Voigt, H., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E.K. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’01), pp. 1034–1041. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (2001)Google Scholar
  44. 44.
    Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13(4), 413–440 (2005). doi:10.1162/106365605774666921 CrossRefGoogle Scholar
  45. 45.
    Khor, E.F., Tan, K.C., Wang, M.L., Lee, T.H.: Evolutionary algorithm with dynamic population size for multi-objective optimization. In: Proceedings of the 26th Annual Confjerence of the IEEE Industrial Electronics Society (IECON’00), IEEE, IEEE Singapore Section, Singapore, pp. 2768–2773 (2000). doi:10.1109/IECON.2000.972436
  46. 46.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci. Mag. 220(4598), 671–680 (1983). doi:10.1126/science.220.4598.671 MathSciNetMATHGoogle Scholar
  47. 47.
    Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006). doi:10.1109/TEVC.2005.860765 CrossRefGoogle Scholar
  48. 48.
    Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the travelling salesman problem: a review of representations and operators. J. Artif. Intell. Res. 13(2), 129–170 (1999). doi:10.1023/A:1006529012972 CrossRefGoogle Scholar
  49. 49.
    Lawler, E.L.G., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: The traveling salesman problem: a guided tour of combinatorial optimization. Estimation, Simulation, and Control—Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley Interscience, Chichester (1985)Google Scholar
  50. 50.
    Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011). doi:10.1162/EVCO_a_00025 CrossRefGoogle Scholar
  51. 51.
    Li, D., Wang, L.: A study on the optimal population size of genetic algorithm. In: Proceedings of Fourth World Congress on Intelligent Control and Automation, vol. 4 (WCICA’02), IEEE, IEEE Singapore Section, Singapore, pp. 3019–3021 (2002). doi:10.1109/WCICA.2002.1020082 (in Chinese)
  52. 52.
    Li, W.: Seeking global edges for traveling salesman problem in multi-start search. J. Glob. Optim. 51(3), 515–540 (2011). doi:10.1007/s10898-010-9643-4 MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Lin, J., Chen, Y.: On the effect of population size and selection mechanism from the viewpoint of collaboration between exploration and exploitation. In: Proceedings of the 2013 IEEE Workshop on Memetic Computing (MC), 2013 IEEE Symposium Series on Computational Intelligence (SSCI’13), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 16–23 (2013). doi:10.1109/MC.2013.6608202
  54. 54.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973). doi:10.1287/opre.21.2.498 MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Liu, W., Weise, T., Wu, Y., Chiong, R.: Hybrid ejection chain methods for the traveling salesman problem. In: Gong, M., Pan, L., Song, T., Tang K, Zhang, X. (eds.) The 10th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA’15), Springer-Verlag GmbH, Berlin, Germany, Communications in Computer and Information Science, vol. 562, pp. 268–282 (2015)Google Scholar
  56. 56.
    Lobo, F.G.: A review of adaptive population sizing schemes in genetic algorithms. In: Beyer, H., O’Reilly, U., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantú-Paz, E., Dasgupta, D., Deb, K., Foster JA, de Jong, E.D., Lipson, H., Llorà, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Watson, J., Zitzler, E. (eds.) Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05), ACM Press, New York, NY, USA, pp. 228–234 (2005). doi:10.1145/1102256.1102310
  57. 57.
    Lu, H., Yen, G.G.: Dynamic population size in multiobjective evolutionary algorithms. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Iba H, Marrow, P., Shackleton, M. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’02), 2002 IEEE World Congress on Computation Intelligence (WCCI’02), IEEE Computer Society Press, Los Alamitos, CA, USA, vol. 1–2, pp. 1648–1653 (2002). doi:10.1109/CEC.2002.1004489
  58. 58.
    Lu, Q., Yao, X.: Clustering and learning gaussian distribution for continuous optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35(2), 195–204 (2005). doi:10.1109/TSMCC.2004.841914 CrossRefGoogle Scholar
  59. 59.
    Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic algorithm for continuous optimization problems. J. Glob. Optim. 37(3), 405–436 (2007). doi:10.1007/s10898-006-9056-6 MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Marinakis, Y., Migdalas, A., Pardalos, P.M.: A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm. J. Glob. Optim. 38(4), 555–580 (2007). doi:10.1007/s10898-006-9094-0 MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Minetti, G.F., Alfonso, H.A.: Variable size population in parallel evolutionary algorithms. In: Kwaśnicka, H., Paprzycki, M. (eds.) Proceedings of the 5th International Conference on Intelligent Systems Design and Applications (ISDA’05), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 350–355 (2005). doi:10.1109/ISDA.2005.99
  62. 62.
    Osterman, C., Rego, C.: The satellite list and new data structures for traveling salesman problems. Working Paper Series HCES-06-03, University of Mississippi, School of Business Administration, Hearin Center for Enterprise Science, University, MS, USA, (2006). http://www.akira.ruc.dk/keld/teaching/algoritmedesign_f08/Artikler/02/Osterman03
  63. 63.
    Ouyang, J., Weise, T., Devert, A., Chiong, R.: Sdgp: A developmental approach for traveling salesman problems. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS’13), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 78–85 (2013). doi:10.1109/CIPLS.2013.6595203
  64. 64.
    Palmer, C.C., Kershenbaum, A.: Representing trees in genetic algorithms. In: Michalewicz, Z., Schaffer, J.D., Schwefel, H., Fogel, D.B., Kitano, H. (eds.) Proceedings of the First IEEE Conference on Evolutionary Computation (CEC’94), IEEE Computer Society, Piscataway, NJ, USA, vol. 1, pp. 379–384 (1994)Google Scholar
  65. 65.
    Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Jidō, K., Gakkai, S. (eds.) Proceedings of IEEE International Conference on Evolutionary Computation (CEC’96), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 798–803 (1996). doi:10.1109/ICEC.1996.542703
  66. 66.
    Piszcz, A.T., Soule, T.: Genetic programming: optimal population sizes for varying complexity problems. In: Keijzer, M., Cattolico, M. (eds.) Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO’06), ACM Press, New York, NY, USA, pp. 953–954 (2006). doi:10.1145/1143997.1144166
  67. 67.
    Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000). doi:10.1162/106365600568086 CrossRefGoogle Scholar
  68. 68.
    Poursoltan, S., Neumann, F.: Ruggedness quantifying for constrained continuous fitness landscapes. In: Datta, R., Deb, K. (eds.) Evolutionary Constrained Optimization, Infosys Science Foundation Series, chap 2. Springer, India, pp. 29–50 (2015). doi:10.1007/978-81-322-2184-5_2
  69. 69.
    Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4), 339–384 (1994). doi:10.1007/BF01531276 MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 2011, 427–441 (2011). doi:10.1016/j.ejor.2010.09.010 MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991). doi:10.1287/ijoc.3.4.376 MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Robini, M.C., Reissman, P.: From simulated annealing to stochastic continuation: a new trend in combinatorial optimization. J. Glob. Optim. 56(1), 185–215 (2013). doi:10.1007/s10898-012-9860-0 MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2013 Federated Conference on Computer Science and Information Systems (FedCSIS’13), pp. 371–376. IEEE, IEEE Singapore Section, Singapore (2013)Google Scholar
  74. 74.
    Ronald, S.: Robust encodings in genetic algorithms: a survey of encoding issues. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) IEEE International Conference on Evolutionary Computation (CEC’97), IEEE Computer Society, Piscataway, NJ, USA, pp. 43–48 (1997). doi:10.1109/ICEC.1997.592265
  75. 75.
    Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, Studies in Fuzziness and Soft Computing, vol. 104, 2nd edn. Springer, Heidelberg (2006)Google Scholar
  76. 76.
    Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,\(\lambda \)) ea. In: Soule, T., Moore, J.H. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’12), ACM, New York, NY, USA, pp. 1349–1356 (2012). doi:10.1145/2330163.2330350
  77. 77.
    Rudolph, G.: Self-adaptive mutations may lead to premature convergence. IEEE Trans. Evol. Comput. 5(4), 410–414 (2001). doi:10.1109/4235.942534 CrossRefGoogle Scholar
  78. 78.
    Sarker, R.A., Kazi, M.F.A.: Population size, search space and quality of solution: an experimental study. In: Sarker, R.A., Reynolds, R.G., Abbass Amein, H.A., Tan, K.C., McKay, R.I., Essam, D.L., Gedeon, T. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’03), IEEE Computer Society, Piscataway, NJ, USA, pp. 2011–2018 (2003). doi:10.1109/CEC.2003.1299920
  79. 79.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005). doi:10.1007/s10898-003-6454-x MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Skubch, H.: Hierarchical Strategy Learning for FLUX Agents: An Applied Technique. VDM Verlag Dr. Müller AG und Co, KG, Saarbrücken (2006)Google Scholar
  81. 81.
    Storch, T.: On the choice of the population size. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H., Burke, E.K., Darwen, P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O.E., Lanzi, P.L., Spector, L., Tettamanzi, A.G.B., Thierens, D. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Part I (GECCO’04), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 3102/2004, pp. 748–760 (2004)Google Scholar
  82. 82.
    Storch, T.: On the choice of the parent population size. Evol. Comput. 16(4), 557–578 (2008). doi:10.1162/evco.2008.16.4.557 CrossRefGoogle Scholar
  83. 83.
    Tompkins, D.A.D., Hoos, H.H.: Ubcsat: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) Revised Selected Papers from the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT’04), Springer-Verlag GmbH, Berlin, Germany, Lecture Notes in Computer Science (LNCS), vol. 3542, pp. 306–320 (2004). doi:10.1007/11527695_24
  84. 84.
    Vincenti, A., Ahmadian, M.R., Vannucci, P.: BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering. J. Glob. Optim. 48(3), 399–421 (2010). doi:10.1007/s10898-009-9503-2 MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Weise, T.: Global Optimization Algorithms—Theory and Application. it-weise.de (self-published), Germany (2009)
  86. 86.
    Weise, T., Zapf, M., Chiong, R., Nebro Urbaneja, A.J.: Why is optimization difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation, Studies in Computational Intelligence, vol. 193, chap 1. Springer-Verlag, Berlin/Heidelberg, pp. 1–50 (2009). doi:10.1007/978-3-642-00267-0_1
  87. 87.
    Weise, T., Niemczyk, S., Chiong, R., Wan, M.: A framework for multi-model edas with model recombination. In: Applications of Evolutionary Computation. Proceedings of EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Part 1 (EvoAPPLICATIONS’11), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 6624, pp. 304–313 (2011). doi:10.1007/978-3-642-20525-5_31
  88. 88.
    Weise, T., Chiong, R., Tang, K.: Evolutionary optimization: pitfalls and booby traps. J. Comput. Sci. Technol. 27(5), 907–936 (2012). doi:10.1007/s11390-012-1274-4 MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Weise, T., Wan, M., Tang, K., Wang, P., Devert, A., Yao, X.: Frequency fitness assignment. IEEE Trans. Evol. Comput. 18, 226–243 (2013). doi:10.1109/TEVC.2013.2251885 CrossRefGoogle Scholar
  90. 90.
    Weise, T., Chiong, R., Tang, K., Lässig, J., Tsutsui, S., Chen, W., Michalewicz, Z., Yao, X.: Benchmarking optimization algorithms: an open source framework for the traveling salesman problem. IEEE Comput. Intell. Mag. 9(3):40–52 (2014). doi:10.1109/MCI.2014.2326101, featured article and selected paper at the website of the IEEE Computational Intelligence Society (http://cis.ieee.org/)
  91. 91.
    Whitley, L.D.: A genetic algorithm tutorial. Tech. Rep. CS-93-103, Colorado State University, Computer Science Department, Fort Collins, CO, USA (1993)Google Scholar
  92. 92.
    Whitley, L.D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994). doi:10.1007/BF00175354 CrossRefGoogle Scholar
  93. 93.
    Whitley, L.D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling salesman: the genetic edge recombination operator. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms (ICGA’89), pp. 133–140. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (1989)Google Scholar
  94. 94.
    Witt, C.: Population size vs. runtime of a simple evolutionary algorithm. In: Reihe Computational Intelligence Collaborative Research Center 531: Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods CI-156/03, University of Dortmund, Dept. of Computer Science/XI, Secretary of the SFB 531, Dortmund, North Rhine-Westphalia, Germany (2003)Google Scholar
  95. 95.
    Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci. 403(1), 104–120 (2008). doi:10.1016/j.tcs.2008.05.011 MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). doi:10.1109/4235.585893 CrossRefGoogle Scholar
  97. 97.
    Wu, Y., Weise, T., Chiong, R.: Local search for the traveling salesman problem: a comparative study. In: Ge, N., Lu, J., Wang, Y., Howard, N., Chen, P., Tao, X., Zhang, B., Zadeh, L.A. (eds.) 14th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC’15), pp. 213–220. IEEE, Piscataway, NJ, USA (2015)Google Scholar
  98. 98.
    Xu, D., Weise, T., Wu, Y., Lässig, J., Chiong, R.: An investigation of hybrid tabu search for the traveling salesman problem. In: Gong M, Pan, L., Song, T., Tang, K., Zhang, X. (eds.) The 10th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA’15), Springer-Verlag GmbH, Berlin, Germany, Communications in Computer and Information Science, vol. 562, pp. 523–537 (2015)Google Scholar
  99. 99.
    Yao, X.: Unpacking and understanding evolutionary algorithms. In: Liu, J., Alippi, C., Bouchon-Meunier, B. (eds.) Advances in Computational Intelligence: Plenary/Invited Lectures at the IEEE World Congress on Computational Intelligence (WCCI’12), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), pp. 60–76 (2012). doi:10.1007/978-3-642-30687-7_4
  100. 100.
    Zhang, J., Yuan, X., Buckles, B.P.: Multimodal function optimization using local ruggedness information. In: Barr, V., Markov, Z. (eds.) Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 17), pp. 380–386. AAAI Press, Menlo Park, CA, USA (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thomas Weise
    • 1
  • Yuezhong Wu
    • 1
  • Raymond Chiong
    • 2
  • Ke Tang
    • 1
  • Jörg Lässig
    • 3
  1. 1.Joint USTC-Birmingham Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Design, Communication and Information Technology, Faculty of Science and Information TechnologyThe University of NewcastleCallaghanAustralia
  3. 3.Faculty of Electrical Engineering and Computer ScienceHochschule Zittau/GörlitzGörlitzGermany

Personalised recommendations