Journal of Global Optimization

, Volume 66, Issue 4, pp 669–710 | Cite as

New multi-commodity flow formulations for the pooling problem

  • Natashia Boland
  • Thomas Kalinowski
  • Fabian Rigterink
Article

Abstract

The pooling problem is a nonconvex nonlinear programming problem with numerous applications. The nonlinearities of the problem arise from bilinear constraints that capture the blending of raw materials. Bilinear constraints are well-studied and significant progress has been made in solving large instances of the pooling problem to global optimality. This is due in no small part to reformulations of the problem. Recently, Alfaki and Haugland proposed a multi-commodity flow formulation of the pooling problem based on input commodities. The authors proved that the new formulation has a stronger linear relaxation than previously known formulations. They also provided computational results which show that the new formulation outperforms previously known formulations when used in a global optimization solver. In this paper, we generalize their ideas and propose new multi-commodity flow formulations based on output, input and output and (input, output)-commodities. We prove the equivalence of formulations, and we study the partial order of formulations with respect to the strength of their LP relaxations. In an extensive computational study, we evaluate the performance of the new formulations. We study the trade-off between disaggregating commodities and therefore increasing the size of formulations versus strengthening the relaxed linear programs and improving the computational performance of the nonlinear programs. We provide computational results which show that output commodities often outperform input commodities, and that disaggregating commodities further only marginally strengthens the linear relaxations. In fact, smaller formulations often show a significantly better performance when used in a global optimization solver.

Keywords

Pooling problem Bilinear programming Nonlinear programming  Linear relaxation Global optimization Blending 

References

  1. 1.
    Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin. http://nbn-resolving.de/urn:nbn:de:0297-zib-11129 (2009)
  2. 2.
    Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)CrossRefGoogle Scholar
  3. 3.
    Al-Khayyal, F.A.: Jointly constrained bilinear programs and related problems: an overview. Comput. Math. Appl. 19(11), 53–62 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alfaki, M.: Generalized pooling problem instances. http://www.ii.uib.no/~mohammeda/gpooling/. Accessed 13 Jan 2016
  6. 6.
    Alfaki, M.: Standard pooling problem instances. http://www.ii.uib.no/~mohammeda/spooling/. Accessed 13 Jan 2016
  7. 7.
    Alfaki, M.: Models and solution methods for the pooling problem. Ph.D. thesis, The University of Bergen. http://hdl.handle.net/1956/5847 (2012)
  8. 8.
    Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56(3), 917–937 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Alfaki, M., Haugland, D.: A cost minimization heuristic for the pooling problem. Ann. Oper. Res. 222(1), 73–87 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Almutairi, H., Elhedhli, S.: A new Lagrangean approach to the pooling problem. J. Glob. Optim. 45(2), 237–257 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Baker, T.E., Lasdon, L.S.: Successive linear programming at Exxon. Manag. Sci. 31(3), 264–274 (1985)CrossRefMATHGoogle Scholar
  16. 16.
    Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bergamini, M.L., Aguirre, P., Grossmann, I.E.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29(9), 1914–1933 (2005)CrossRefGoogle Scholar
  18. 18.
    Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS—A User’s Guide (2015)Google Scholar
  19. 19.
    Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Floudas, C.A., Aggarwal, A., Ciric, A.R.: Global optimum search for nonconvex NLP and MINLP problems. Comput. Chem. Eng. 13(10), 1117–1132 (1989)CrossRefGoogle Scholar
  22. 22.
    Floudas, C.A., Visweswaran, V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)CrossRefGoogle Scholar
  23. 23.
    Floudas, C.A., Visweswaran, V.: Primal-relaxed dual global optimization approach. J. Optim. Theory Appl. 78(2), 187–225 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Foulds, L.R., Haugland, D., Jörnsten, K.: A bilinear approach to the pooling problem. Optimization 24(1–2), 165–180 (1992)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. (2003)Google Scholar
  26. 26.
    Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)CrossRefGoogle Scholar
  27. 27.
    Gupte, A.: Mixed integer bilinear programming with applications to the pooling problem. Ph.D. thesis, Georgia Institute of Technology. http://hdl.handle.net/1853/45761/ (2012)
  28. 28.
    Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. http://www.optimization-online.org/DB_HTML/2015/04/4883.html (2015)
  29. 29.
    Hasan, M.M.F.: Modeling and optimization of a liquefied natural gas process. Ph.D. thesis, National University of Singapore. scholarbank.nus.edu.sg/handle/10635/17334 (2010)
  30. 30.
    Hasan, M.M.F., Karimi, I.A.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE J. 56(7), 1880–1893 (2010)CrossRefGoogle Scholar
  31. 31.
    Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)CrossRefGoogle Scholar
  32. 32.
    IBM Corporation. IBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual. Version 12 Release 6, (2013)Google Scholar
  33. 33.
    Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)CrossRefGoogle Scholar
  34. 34.
    Kawajir, Y., Laird, C., Wächter, A.: Introduction to Ipopt: a tutorial for downloading, installing, and using Ipopt. Revision 2020 (2011)Google Scholar
  35. 35.
    Kolodziej, S.P., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57(4), 1039–1063 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Lasdon, L.S., Waren, A.D., Sarkar, S., Palacios, F.: Solving the pooling problem using generalized reduced gradient and successive linear programming algorithms. SIGMAP Bull. 27, 9–15 (1979)CrossRefGoogle Scholar
  37. 37.
    Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29(2), 125–155 (2004)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)CrossRefGoogle Scholar
  41. 41.
    Misener, R.: Novel global optimization methods: theoretical and computational studies on pooling problems with environmental constraints. Ph.D. thesis, Princeton University. http://arks.princeton.edu/ark:/88435/dsp015q47rn787 (2012)
  42. 42.
    Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)MathSciNetMATHGoogle Scholar
  43. 43.
    Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)CrossRefGoogle Scholar
  44. 44.
    Palacios-Gomez, F., Lasdon, L., Engquist, M.: Nonlinear optimization by successive linear programming. Manag. Sci. 28(10), 1106–1120 (1982)CrossRefMATHGoogle Scholar
  45. 45.
    Pham, V., Laird, C., El-Halwagi, M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48(4), 1973–1979 (2009)CrossRefGoogle Scholar
  46. 46.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, volume 31 of Nonconvex Optimization and its Applications. Springer, New York (1999)Google Scholar
  47. 47.
    Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2(4), 379–410 (1992)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, volume 31 of Nonconvex Optimization and its Applications. Springer, New York (2002)CrossRefMATHGoogle Scholar
  49. 49.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Teles, J.P., Castro, P.M., Matos, H.A.: Multi-parametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55(2), 227–251 (2013)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM Rev. 57, 3–57 (2015)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Visweswaran, V.: MINLP: applications in blending and pooling problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1399–1405. Springer, New York (2001)CrossRefGoogle Scholar
  54. 54.
    Visweswaran, V., Floudas, C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-II. Application of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)CrossRefGoogle Scholar
  55. 55.
    Visweswaran, V., Floudas, C.A.: New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints. J. Glob. Optim. 3(4), 439–462 (1993)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Visweswaran, V., Floudas, C.A.: Computational results for an efficient implementation of the GOP algorithm and its variants. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, volume 9 of Nonconvex Optimization and its Applications, pp. 111–153. Springer, New York (1996)Google Scholar
  57. 57.
    Visweswaran, V., Floudas, C.A.: New formulations and branching strategies for the GOP algorithm. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, volume 9 of Nonconvex Optimization and its Applications, pp. 75–109. Springer, New York (1996)Google Scholar
  58. 58.
    Visweswaran, V., Floudas, C.A.: cGOP: a deterministic global optimization package. User’s guide. Version 1.1 (1997)Google Scholar
  59. 59.
    Wicaksono, D.S., Karimi, I.A.: Modeling piecewise under- and overestimators for bilinear process network synthesis via mixed-integer linear programming. In: Braunschweig, B., Joulia, X. (eds.) \(18^{th}\) European Symposium on Computer Aided Process Engineering-ESCAPE 18. Lyon, France (2008)Google Scholar
  60. 60.
    Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under-and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)CrossRefGoogle Scholar
  61. 61.
    Yıldız, S., Vielma, J.P.: Incremental and encoding formulations for mixed integer programming. Oper. Res. Lett. 41, 654–658 (2013)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Zhang, J., Kim, N.-H., Lasdon, L.: An improved successive linear programming algorithm. Manag. Sci. 31(10), 1312–1331 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Mathematical and Physical SciencesThe University of NewcastleNewcastleAustralia

Personalised recommendations