Journal of Global Optimization

, Volume 65, Issue 4, pp 709–743 | Cite as

Packing ellipsoids by nonlinear optimization

Article

Abstract

In this paper, continuous and differentiable nonlinear programming models and algorithms for packing ellipsoids in the n-dimensional space are introduced. Two different models for the non-overlapping and models for the inclusion of ellipsoids within half-spaces and ellipsoids are presented. By applying a simple multi-start strategy combined with a clever choice of starting guesses and a nonlinear programming local solver, illustrative numerical experiments are presented.

Keywords

Cutting and packing ellipsoids Nonlinear programming Models  Numerical experiments 

Notes

Acknowledgments

The authors are indebted to the anonymous referees whose comments helped to improve this paper.

References

  1. 1.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)CrossRefGoogle Scholar
  2. 2.
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Andretta, M., Birgin, E.G., Martínez, J.M.: Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization. Optimization 54(3), 305–325 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernal, J.D.: Geometrical approach to the structure of liquids. Nature 183(4655), 141–147 (1959)CrossRefGoogle Scholar
  5. 5.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont, MA (1999)Google Scholar
  6. 6.
    Bezrukov, A., Stoyan, D.: Simulation and statistical snalysis of random packings of ellipsoids. Part. Part. Syst. Charact. 23, 388–398 (2007)CrossRefGoogle Scholar
  7. 7.
    Birgin, E.G., Bustamante, L.H., Callisaya, H.F., Martínez, J.M.: Packing circles within ellipses. Int. Trans. Oper. Res. 20(3), 365–389 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37(7), 1318–1327 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Birgin, E.G., Lobato, R.D.: Orthogonal packing of identical rectangles within isotropic convex regions. Comput. Ind. Eng. 59(4), 595–602 (2010)CrossRefGoogle Scholar
  11. 11.
    Birgin, E.G., Martínez, J.M.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing 15(1), 49–60 (2001)MathSciNetMATHGoogle Scholar
  12. 12.
    Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23(1), 101–125 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014)CrossRefMATHGoogle Scholar
  14. 14.
    Birgin, E.G., Martínez, J.M., Nishihara, F.H., Ronconi, D.P.: Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Comput. Oper. Res. 33(12), 3535–3548 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG-software for convex-constrained optimization. ACM Trans. Math. Softw. 27(3), 340–349 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Birgin, E.G., Martínez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. Eur. J. Oper. Res. 160(1), 19–33 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35(7), 2357–2375 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Chaikin, P.: Thermodynamics and hydrodynamics of hard spheres: the role of gravity. In: Cates, M.E., Evans, M.R. (eds.) Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, vol. 53, pp. 315–348. Institute of Physics Publishing, Bristol (2000)CrossRefGoogle Scholar
  21. 21.
    Cheng, Z.D., Russell, W.B., Chaikin, P.M.: Controlled growth of hard-sphere colloidal crystals. Nature 401(6756), 893–895 (1999)CrossRefGoogle Scholar
  22. 22.
    Choi, Y.-K., Chang, J.-W., Wang, W., Kim, M.-S., Elber, G.: Continuous collision detection for ellipsoids. IEEE Trans. Vis. Comput. Graph. 15(2), 311–324 (2009)CrossRefGoogle Scholar
  23. 23.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, Volume 290 of Grundlehren der math. Wissenschaften. Springer, New York (1999)CrossRefGoogle Scholar
  24. 24.
    Donev, A., Cisse, I., Sachs, D., Variano, E., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004)CrossRefGoogle Scholar
  25. 25.
    Edwards, S.F.: The role of entropy in the specification of a powder. In: Mehta, A. (ed.) Granular Matter: An Interdisciplinary Approach, pp. 121–140. Springer, New York (1994)CrossRefGoogle Scholar
  26. 26.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL—A Modeling Language for Mathematical Programming, 2nd edn. Duxbury Press, North Scituate, MA (2002)Google Scholar
  27. 27.
    Galiev, S.I., Lisafina, M.S.: Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Comput. Math. Math. Phys. 53(11), 1748–1762 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  29. 29.
    He, S., Xu, H.-K.: Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities. J. Glob. Optim. 55(4), 1375–1384 (2012)MathSciNetMATHGoogle Scholar
  30. 30.
    Hughes, G.B., Chraibi, M.: Calculating ellipse overlap areas. Comput. Vis. Sci. 15(5), 291–301 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22(4), 1579–1606 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Combining stabilized SQP with the augmented Lagrangian algorithm. Comput. Optim. Appl. 62(2), 405–429 (2015)Google Scholar
  33. 33.
    Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255(5051), 1523–1531 (1992)CrossRefGoogle Scholar
  34. 34.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)CrossRefGoogle Scholar
  35. 35.
    Jodrey, W.S., Tory, E.M.: Computer simulation of close random packings of equal spheres. Phys. Rev. A 32(4), 2347–2351 (1985)CrossRefGoogle Scholar
  36. 36.
    Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J. Glob. Optim. (2015). doi:10.1007/s10898-015-0348-6 Google Scholar
  37. 37.
    Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43(2–3), 299–328 (2009)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 59(2–3), 405–437 (2014)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Lu, L.-Z., Pearce, C.E.M.: Some new bounds for singular values and eigenvalues of matrix products. Ann. Oper. Res. 98(1), 141–148 (2000)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Lubachevsky, B.D., Stillinger, F.H.: Geometric properties of random disk packings. J. Stat. Phys. 60(5–6), 561–583 (1990)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefGoogle Scholar
  43. 43.
    Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1), 3–50 (2013)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Pankratov, A., Romanova, T., Khlud, O.: Quasi-phi-functions in packing of ellipsoids. Radioelectron. Inform. 68, 37–42 (2015)Google Scholar
  45. 45.
    Pusey, P.N.: Colloidal suspensions. In: Hansen, J.P., Levesque, D., Zinnjustin, J. (eds.) Liquids, Freezing and Glass Transition, PT 2, Volume 51 of Les Houches Summer School Session, pp. 763–942. Elsevier Science Publishers B. V, Amsterdam (1991)Google Scholar
  46. 46.
    Rintoul, M.D., Torquato, S.: Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77(20), 4198–4201 (1996)CrossRefGoogle Scholar
  47. 47.
    Rockafellar, R.T.: Convex Analysis, Volume 28 of Princeton Mathematical Series. Princeton University Press, Princeton (1970)Google Scholar
  48. 48.
    Sahinidis, N.V.: BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2014)Google Scholar
  49. 49.
    Stoyan, Y.G., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. (2015). doi:10.1007/s10898-015-0331-2 MATHGoogle Scholar
  50. 50.
    Stoyan, Y.G., Yas’kov, G.: A mathematical model and a solution method for the problem of placing various-sized circles into a strip. Eur. J. Oper. Res. 156(3), 590–600 (2004)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Stoyan, Y.G., Yas’kov, G.: Packing congruent hyperspheres into a hypersphere. J. Glob. Optim. 52(4), 855–868 (2012)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Stoyan, Y.G., Yas’kov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89(10), 1355–1369 (2012)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Stoyan, Y.G., Zlotnik, M.V., Chugay, A.: Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region. J. Oper. Res. Soc. 63(3), 379–391 (2012)CrossRefGoogle Scholar
  54. 54.
    Uhler, C., Wright, S.J.: Packing ellipsoids with overlap. SIAM Rev. 55(4), 671–706 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. G. Birgin
    • 1
  • R. D. Lobato
    • 1
  • J. M. Martínez
    • 2
  1. 1.Department of Computer Science, Institute of Mathematics and StatisticsUniversity of São PauloSão PauloBrazil
  2. 2.Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific ComputingState University of CampinasCampinasBrazil

Personalised recommendations