Advertisement

Journal of Global Optimization

, Volume 65, Issue 2, pp 309–327 | Cite as

Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem

  • Francisco J. Aragón ArtachoEmail author
  • Jonathan M. Borwein
  • Matthew K. Tam
Article

Abstract

In recent times the Douglas–Rachford algorithm has been observed empirically to solve a variety of nonconvex feasibility problems including those of a combinatorial nature. For many of these problems current theory is not sufficient to explain this observed success and is mainly concerned with questions of local convergence. In this paper we analyze global behavior of the method for finding a point in the intersection of a half-space and a potentially non-convex set which is assumed to satisfy a well-quasi-ordering property or a property weaker than compactness. In particular, the special case in which the second set is finite is covered by our framework and provides a prototypical setting for combinatorial optimization problems.

Keywords

Douglas–Rachford algorithm Global convergence Feasibility problem Half-space Non-convex 

Mathematics Subject Classification

90C26 65K05 

Notes

Acknowledgments

We would like to thank the anonymous referee for their helpful suggestions and comments.

References

  1. 1.
    Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Douglas–Rachford feasibility methods for matrix completion problems. ANZIAM J. 55(4), 299–326 (2014). doi: 10.1017/S1446181114000145 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013). doi: 10.1007/s10898-012-9958-4 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Recent results on Douglas–Rachford methods for combinatorial optimization problem. J. Optim. Theory. Appl. 163(1), 1–30 (2014). doi: 10.1007/s10957-013-0488-0 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borwein, J.M., Tam, M.K.: Reflection methods for inverse problems with application to protein conformation determination. In: Generalized Nash Equilibrium Problems, Bilevel programming and MPEC, New Delhi (2012), (in press)Google Scholar
  5. 5.
    Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. 160(1), 1–29 (2014). doi: 10.1007/s10957-013-0381-x MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borwein, J.M., Tam, M.K.: The cyclic Douglas–Rachford method for inconsistent feasibility problems. J. Nonlinear Convex Anal. 16(4), 537–584 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Dao, M.N., Moursi, W.M.: The Douglas–Rachford algorithm in the affine-convex case. arXiv:1505.06408v1
  8. 8.
    Bauschke, H.H., Koch, V.R.: Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces. Contemp. Math. 636, 1–40 (2015). doi: 10.1090/conm/636 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bauschke, H.H., Noll, D.: On the local convergence of the Douglas–Rachford algorithm. Arch. Math. 102, 589–600 (2014). doi: 10.1007/s00013-014-0652-2 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. JOSA A 19(7), 1334–1345 (2002). doi: 10.1364/JOSAA.19.001334 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Benoist, J.: The Douglas–Rachford algorithm for the case of the sphere and the line. J. Global Optim. (2015). doi: 10.1007/s10898-015-0296-1
  12. 12.
    Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93–109. Springer, New York (2011). doi: 10.1007/978-1-4419-9569-8
  13. 13.
    Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2), 418–423 (2007). doi: 10.1073/pnas.0606359104 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). doi: 10.1137/120902653 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas–Rachford for sparse affine feasibility. IEEE. Trans. Signal Proc. 62(18), 4868–4881 (2014). doi: 10.1109/TSP.2014.2339801 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gravel, S., Elser, V.: Divide and concur: a general approach to constraint satisfaction. Phys. Rev. E 78(3), 036706 (2008). doi: 10.1103/PhysRevE.78.036706 CrossRefGoogle Scholar
  17. 17.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)zbMATHGoogle Scholar
  18. 18.
    Phan, H.M.: Linear convergence of the Douglas–Rachford method for two closed sets. Optim. (2015). doi: 10.1080/02331934.2015.1051532

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Francisco J. Aragón Artacho
    • 1
    Email author
  • Jonathan M. Borwein
    • 2
  • Matthew K. Tam
    • 2
  1. 1.Department of MathematicsUniversity of AlicanteAlicanteSpain
  2. 2.Centre for Computer-Assisted Research Mathematics and its Applications (CARMA)University of NewcastleCallaghanAustralia

Personalised recommendations