Journal of Global Optimization

, Volume 67, Issue 1–2, pp 379–397 | Cite as

Some feasibility sampling procedures in interval methods for constrained global optimization

  • Mengyi YingEmail author
  • Min Sun


Three feasibility sampling procedures are developed as add-on acceleration strategies in interval methods for solving global optimization problem over a bounded interval domain subject to one or two additional linear constraints. The main features of all three procedures are their abilities to quickly test any sub-domain’s feasibility and to actually locate a feasible point if the feasible set within the sub-domain is nonempty. This add-on feature of feasibility sampling can significantly lower upper bounds of the best objective function value in any interval method and improve its convergence and effectiveness.


Interval method Feasible sampling Linear constraints 


  1. 1.
    Comba, J., Stolfi, J.: Affine arithmetic and its application to computer graphics. In: Proceedings of SIBGRAPI’93 VI Simpsio Brasileiro de Computao Grfica e Processamento de Imagens (Recife, BR), p. 918 (1993)Google Scholar
  2. 2.
    de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37, 147–158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Glob. Optim. 61, 255–278 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  5. 5.
    Hansen, E., Walster, G.: Global Optimization Using Interval Analysis, 2nd edn. CRC Press, New York (2003)zbMATHGoogle Scholar
  6. 6.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to global optimization. In: Nonconvex Optimization and Its Applications, vol. 48, 2nd edn. Springer (2000)Google Scholar
  7. 7.
    Kearfott R.B.: On Verifying Feasibility in Equality Constrained Optimization Problems. (1996)
  8. 8.
    Kearfott, R.B.: Abstract generalized bisection and a cost bound. Math. Comput. 49(179), 187–202 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kearfott, R.B.: A review of techniques in the verified solution of constrained global optimization problems. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations. Applied Optimization, vol. 3, pp. 23–59. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  10. 10.
    Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)zbMATHGoogle Scholar
  11. 11.
    Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Pedamallu, C.S., Kumar, A., Csendes, T., Posfai, J.: An interval partitioning algorithm for constraint satisfaction problems. Int. J. Model. Identif. Control 14, 133–140 (2011)CrossRefGoogle Scholar
  13. 13.
    Ratscheck, H., Rokne, J.: New Computer Methods for Global Optimization. Wiley, New York (1988)Google Scholar
  14. 14.
    Stolfi, J., de Figueiredo, L.H.: An introduction to Affine arithmetic. TEMA Tend. Mat. Apl. Comput. 4(3), 297–312 (2003)Google Scholar
  15. 15.
    Sun, M., Johnson, A.W.: Interval branch and bound with local sampling for constrained global optimization. J. Glob. Optim. 21, 61–82 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of North GeorgiaDahlonegaUSA
  2. 2.University of AlabamaTuscaloosaUSA

Personalised recommendations