Advertisement

Journal of Global Optimization

, Volume 65, Issue 2, pp 137–173 | Cite as

Irregular polyomino tiling via integer programming with application in phased array antenna design

  • Serdar Karademir
  • Oleg A. ProkopyevEmail author
  • Robert J. Mailloux
Article

Abstract

A polyomino is a generalization of the domino and is created by connecting a fixed number of unit squares along edges. Tiling a region with a given set of polyominoes is a hard combinatorial optimization problem. This paper is motivated by a recent application of irregular polyomino tilings in the design of phased array antennas. Specifically, we formulate the irregular polyomino tiling problem as a nonlinear exact set covering model, where irregularity is incorporated into the objective function using the information-theoretic entropy concept. An exact solution method based on a branch-and-price framework along with novel branching and lower-bounding schemes is proposed. The developed method is shown to be effective for small- and medium-size instances of the problem. For large-size instances, efficient heuristics and approximation algorithms are provided. Encouraging computational results including phased array antenna simulations are reported.

Keywords

Polyomino Entropy Set partitioning Phased array antenna 

Notes

Acknowledgments

The first two authors were supported by AFOSR Grant FA9550-08-1-0268. The third author was supported by AFOSR Grant FA9550-12-1-0105. The authors thank Dr. Osman Y. Özaltın and Gabriel L. Zenarosa for their valuable comments on the earlier draft of the paper and Dr. Scott Santarelli for his assistance with antenna simulation software. The first two authors also acknowledge Dr. Arje Nachman and Dr. Donald W. Hearn from AFOSR for introducing them to the considered application. Finally, the authors thank the reviewers and the AE for their helpful comments.

References

  1. 1.
    Adjengue, L., Audet, C., Yahia, I.: A variance-based method to rank input variables of the mesh adaptive direct search algorithm. Optim. Lett. 8(5), 1599–1610 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ash, J., Golomb, S.: Tiling deficient rectangles with trominoes. Math. Mag. 77(1), 46–55 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Audet, C., Dennis Jr, J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large-scale p-median problems. Math. Program. 109, 89–114 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balas, E., Padberg, M.: On the set-covering problem. Oper. Res. 20(6), 1152–1161 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Balas, E., Padberg, M.: Set partitioning: a survey. SIAM Rev. 18(4), 710–760 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berge, C., Chen, C., Chvatal, V., Seow, C.: Combinatorial properties of polyominoes. Combinatorica 1(3), 217–224 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. No. 66, 72 (1966)Google Scholar
  10. 10.
    Bodini, O.: Tiling a rectangle with polyominoes. Discrete Math. Theor. C pp. 81–88 (2003)Google Scholar
  11. 11.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)zbMATHGoogle Scholar
  12. 12.
    Cardinal, J., Fiorini, S., Joret, G.: Tight results on minimum entropy set cover. Algorithmica 51, 49–60 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial aspects of l-convex polyominoes. Eur. J. Comb. 28, 1724–1741 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    COIN-OR: Branch-Cut-Price Framework 1.3.1. https://projects.coin-or.org/Bcp (2011)
  15. 15.
    Dehmer, M., Emmert-Streib, F.: Structural information content of networks: graph entropy based on local vertex functionals. Comput. Biol. Chem. 32(2), 131–138 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Delest, M., Viennot, G.: Algebraic languages and polyominoes enumeration. Theor. Comput. Sci. 34(1–2), 169–206 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Demaine, E., Demaine, M.: Jigsaw puzzles, edge matching, and polyomino packing: connections and complexity. Graph Comb. 23, 195–208 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Duchi, E., Rinaldi, S., Schaeffer, G.: The number of z-convex polyominoes. Adv. Appl. Math. 40, 54–72 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fang, S., Rajasekera, J., Tsao, H.: Entropy Optimization and Mathematical Programming. International Series in Operations Research & Management Science. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  20. 20.
    Garfinkel, R., Nemhauser, G.: The set-partitioning problem: set covering with equality constraints. Oper. Res. 17(5), 848–856 (1969)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ghoniem, A., Sherali, H.: Complementary column generation and bounding approaches for set partitioning formulations. Optim. Lett. 3, 123–136 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Golomb, S.: Tiling with polyominoes. J. Comb. Theory 1, 280–296 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Golomb, S.: Tiling with sets of polyominoes. J. Comb. Theory 9, 60–71 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Golomb, S.: Polyominoes: Puzzles, Patterns, Problems, and Packings, 2nd edn. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  25. 25.
    Halperin, E., Karp, R.: The minimum-entropy set cover problem. Theor. Comput. Sci. 348(2–3), 240–250 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge Math. Lib. Cambridge Univ. Press, Cambridge (1952)zbMATHGoogle Scholar
  27. 27.
    Haus, U., Michaels, D., Savchenko, A.: Extended formulations for MINLP problems by value decompositions. In: EngOpt 2008 (2008)Google Scholar
  28. 28.
  29. 29.
    Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102(3/4), 865–881 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kapur, J., Kesavan, H.: Entropy Optimization Principles with Applications. Academic Press, London (1992)CrossRefzbMATHGoogle Scholar
  32. 32.
    Köppe, M., Louveaux, Q., Weismantel, R.: Intermediate integer programming representations using value disjunctions. Discrete Optim. 5(2), 293–313 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lee, J.: Constrained maximum-entropy sampling. Oper. Res. 46(5), 655–664 (1998)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mailloux, R.: Phased array theory and technology. Proc. IEEE 70(3), 246–302 (1982)CrossRefGoogle Scholar
  35. 35.
    Mailloux, R., Santarelli, S., Roberts, T.: Wideband arrays using irregular (polyomino) shaped subarrays. Electron. Lett. 42(18), 11–12 (2006)CrossRefGoogle Scholar
  36. 36.
    Mailloux, R., Santarelli, S., Roberts, T., Luu, D.: Irregular polyomino-shaped subarrays for space-based active arrays. Int. J. Antennas Propag. 2009 (2009)Google Scholar
  37. 37.
    Mollin, R.: An Introduction to Cryptography. Discrete Mathematics and Its Applications. Chapman & Hall, London (2007)Google Scholar
  38. 38.
    Moore, C., Robson, J.: Hard tiling problems with simple tiles. Discrete Comput. Geom. 26, 573–590 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Books on Mathematics. Dover Publications, NY (1998)Google Scholar
  40. 40.
    Parker, D., Zimmermann, D.: Phased arrays-part I: theory and architectures. IEEE Trans. Microw. Theory 50(13), 678–687 (2002)CrossRefGoogle Scholar
  41. 41.
    Reid, M.: Tiling with similar polyominoes. J. Recreat. Math. 31(1), 15–24 (2002)Google Scholar
  42. 42.
    Ryan, D., & Foster, B.: An integer programming approach to scheduling. In: Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280 (1981)Google Scholar
  43. 43.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Simonyi, G.: Graph entropy: a survey. Comb. Optim. 20, 399–441 (1995)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Vanderbeck, F.: On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Oper. Res. 48(1), 111–128 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Math. Program. 130, 249–294 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, P.: 2 algorithms for constrained two-dimensional cutting stock problems. Oper. Res. 31(3), 573–586 (1983)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Serdar Karademir
    • 1
  • Oleg A. Prokopyev
    • 1
    Email author
  • Robert J. Mailloux
    • 2
  1. 1.Department of Industrial EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Air Force Research LaboratoryWPAFBDaytonUSA

Personalised recommendations