Advertisement

Journal of Global Optimization

, Volume 64, Issue 4, pp 765–784 | Cite as

Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems

  • Pedro M. Castro
Article

Abstract

A key element for the global optimization of non-convex mixed-integer bilinear problems is the computation of a tight lower bound for the objective function being minimized. Multiparametric disaggregation is a technique for generating a mixed-integer linear relaxation of a bilinear problem that works by discretizing the domain of one of the variables in every bilinear term according to a numeric representation system. This can be done up to a certain accuracy level that can be different for each discretized variable so as to adjust the number of significant digits to their range of values and give all variables the same importance. We now propose a normalized formulation (NMDT) that achieves the same goal using a common setting for all variables, which is equivalent to the number of uniform partitions in a closely related, piecewise McCormick (PCM) approach. Through the solution of several benchmark problems from the literature involving four distinct problem classes, we show that the computational performance of NMDT is already better than PCM for ten partitions, with the difference rising quickly due to the logarithmic versus linear growth in the number of binary variables with the number of partitions. The results also show that a global optimization solver based on the proposed relaxation compares favorably with commercial solvers BARON and GloMIQO.

Keywords

Mixed-integer nonlinear programming Quadratic optimization Disjunctive programming Algorithm Process networks 

List of symbols

\(a_{ijq}\)

Scalar multiplying bilinear term \(x_i x_j \) in constraint q

\(B_q\)

Matrix with coefficients for variables \({\varvec{x}}\) in constraint q

\(C_q\)

Matrix with coefficients for variables \({\varvec{y}}\) in constraint q

\(d_q\)

Constant term in constraint q

\(f_0\)

Optimal value of objective function for problem (P)

\(f_0^{\prime }\)

Optimal value of objective function for problem (P’) that is equivalent to (P)

\(f_0^R\)

Optimal value of objective function for problem (PR), lower bound for (P)

\(f_0^*\)

Upper bound for problem (P)

\(f_q \left( {{\varvec{x}},{\varvec{y}}} \right) \)

Function of continuous variables x and binary variables y defining constraint q

k

Digit in decimal numerical representation system, \(\in \left\{ {0,\ldots ,9} \right\} \)

l

Position in decimal numerical representation system, \(\in \left\{ {p,\ldots ,-1} \right\} \)

n

Partition in piecewise McCormick relaxation, \(\in \left\{ {1,\ldots ,N} \right\} \)

N

Number of partitions specified for piecewise McCormick relaxation

p

Parameter defining the accuracy level of discretized variables, \(\in {\mathbb {Z}}^{-}\)

\({\varvec{x}}^{L}\)

Vector of lower bounds of continuous variables x

\({\varvec{x}}^{U}\)

Vector of upper bounds of continuous variables x

\(x_i\)

Variable of bilinear term \(x_i x_j \) to be disaggregated

\({\hat{x}}_{ijkl}\)

Disaggregated variable from linearization of \(x_i z_{jkl} \)

\({\hat{x}}_{ijn}\)

Disaggregated variable in piecewise McCormick relaxation

\({\hat{x}}_{jn}\)

Disaggregated variable in piecewise McCormick relaxation

\(x_j\)

Variable of bilinear term \(x_i x_j \) to be discretized

\(w_{ij}\)

Variable replacing bilinear term \(x_i x_j \)

\(z_{jkl}\)

Binary variable assigning to \(\lambda _j \) digit k to position l

\(z_{jn}\)

Binary variable assigning partition n to variable \(x_j \)

\(\varepsilon \)

Targeted relative optimality tolerance \(\lambda _j=\) Discretized variable linked to original variable \(x_j \), \(\in \left[ {0,1} \right] \)

\(\lambda _{jl}\)

Value of \(\lambda _j \) in position l of discretized representation, \(\in \left\{ {0,10^{l},\ldots ,9\cdot 10^{l}} \right\} \)

\(\nu _{ij}\)

Variable replacing bilinear term \(x_i \lambda _j \)

\(\tau \)

Parameter for comparing performance of a solver with respect to its competitors

\(\Delta \lambda _j\)

Slack variable ensuring continuous domain for \(\lambda _j , \in \left[ {0,10^{p}} \right] \)

\(\Delta \nu _{ij}\)

Variable replacing bilinear term \(x_i \cdot \Delta \lambda _j \)

\(\left( {{\varvec{x}}^{R},{\varvec{y}}^{R}} \right) \)

Optimal solution for problem (PR)

\(\left( {{\varvec{x}}^{*},{\varvec{y}}^{*}} \right) \)

Best-known solution for problem (P)

Notes

Acknowledgments

Financial support from Fundação para a Ciência e Tecnologia (FCT) through the Investigador FCT 2013 program.

References

  1. 1.
    Quesada, I., Grossmann, I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19(12), 1219–1242 (1995)CrossRefGoogle Scholar
  2. 2.
    Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(2), 1027–1037 (2006)CrossRefGoogle Scholar
  3. 3.
    Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)CrossRefGoogle Scholar
  4. 4.
    Lee, H., Pinto, J.M., Grossmann, I.E., Park, S.: Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind. Eng. Chem. Res. 35, 1630–1641 (1996)CrossRefGoogle Scholar
  5. 5.
    Jia, Z., Ierapetritou, M., Kelly, J.D.: Refinery short-term scheduling using continuous time formulation: crude-oil operations. Ind. Eng. Chem. Res. 42, 3085–3097 (2003)CrossRefGoogle Scholar
  6. 6.
    Castro, P.M., Grossmann, I.E.: Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation. Ind. Eng. Chem. Res. 53, 15127–15145 (2014)CrossRefGoogle Scholar
  7. 7.
    Moro, L.F.L., Zanin, A.C., Pinto, J.M.: A planning model for refinery diesel production. Comput. Chem. Eng. 22, S1039–42 (1998)CrossRefGoogle Scholar
  8. 8.
    Jia, Z., Ierapetritou, M.: Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind. Eng. Chem. Res. 42, 825–835 (2003)CrossRefGoogle Scholar
  9. 9.
    Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)CrossRefGoogle Scholar
  10. 10.
    Galan, B., Grossmann, I.E.: Optimal design of distributed wastewater treatment networks. Ind. Eng. Chem. Res. 37, 4036–4048 (1998)CrossRefGoogle Scholar
  11. 11.
    Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)CrossRefGoogle Scholar
  12. 12.
    Faria, D.C., Bagajewicz, M.J.: Novel bound contracting procedure for global optimization of bilinear MINLP problems with applications to water management problems. Comput. Chem. Eng. 35, 446–55 (2011)CrossRefGoogle Scholar
  13. 13.
    Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AIChE J. 58(8), 2320–35 (2012)CrossRefGoogle Scholar
  14. 14.
    Rubio-Castro, E., Ponce-Ortega, J.M., Serna-González, M., El-Halwagi, M.M., Pham, V.: Global optimization in property-based inter-plant water integration. AIChE J. 59(3), 813–33 (2013)CrossRefGoogle Scholar
  15. 15.
    Carrión, M., Arroyo, J.M.: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21(3), 1371–1378 (2006)CrossRefGoogle Scholar
  16. 16.
    Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Hydro energy systems management in Portugal: profit-based evaluation of a mixed-integer nonlinear approach. Energy 36, 500–507 (2011)CrossRefGoogle Scholar
  17. 17.
    Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations for solving non-convex trim loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Zorn, K., Sahinidis, N.V.: Computational experience with applications of bilinear cutting planes. Ind. Eng. Chem. Res. 52, 7514–7525 (2013)CrossRefGoogle Scholar
  19. 19.
    Teles, J.P., Castro, P.M., Matos, H.A.: Univariate parameterization for global optimization of mixed-integer polynomial problems. Eur. J. Oper. Res. 229, 613–25 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 53, 3–50 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sahinidis, N.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Castro, P.M., Grossmann, I.E.: Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J. Glob. Optim. 59, 277–306 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng. 72, 300–311 (2015)CrossRefGoogle Scholar
  25. 25.
    Bergamini, M.L., Aguirre, P., Grossmann, I.E.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29, 1914–1933 (2005)CrossRefGoogle Scholar
  26. 26.
    Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48, 5742–5766 (2009)CrossRefGoogle Scholar
  27. 27.
    Wicaksono, D.N., Karimi, I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54, 991–1008 (2008)CrossRefGoogle Scholar
  28. 28.
    Hasan, M.M.F., Karimi, I.A.: Piecewise linear relaxation of bilinear programs using bivari- ate partitioning. AIChE J. 56, 1880–1893 (2010)CrossRefGoogle Scholar
  29. 29.
    Teles, J.P., Castro, P.M., Matos, H.A.: Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55, 227–251 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kolodziej, S., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57, 1039–1063 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. Ser. B 136(1), 155–82 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013)CrossRefGoogle Scholar
  33. 33.
    Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)CrossRefGoogle Scholar
  35. 35.
    Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Raman, R., Grossmann, I.E.: Modeling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18, 563–78 (1994)CrossRefGoogle Scholar
  37. 37.
    Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Math. 6, 466–486 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. Math. Program. Study 22, 167–184 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Oral, M., Kettani, O.: A linearization procedure for quadratic and cubic mixed-integer problems. Oper. Res. 40(Suppl 1), S109–S116 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 146 (1976)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Sherali, H.D., Alameddine, A.: A new reformulation linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Sherali, H.D., Adams, W.P., Driscoll, P.J.: Exploiting special structures in constructing a hierarchy of relaxations for 0–1 mixed integer problems. Oper. Res. 46(3), 396–405 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes, vol. 187 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1981)Google Scholar
  44. 44.
    Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Boston (1999)CrossRefzbMATHGoogle Scholar
  45. 45.
    Misener, R., Floudas, C.A.: Mixed-Integer Quadratically-Constrained Quadratic Programs: GloMIQO 2.2 Test Suite.http://helios.princeton.edu/GloMIQO/MisenerFloudas_GloMIQO_TestSet.pdf. Accessed February 17, 2015
  46. 46.
    Drud, A.S.: CONOPT—a large-scale GRG code. INFORMS J. Comput. 6(2), 207–216 (1994)CrossRefzbMATHGoogle Scholar
  47. 47.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–49 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91, 201–213 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Castro, P.M., Grossmann, I.E.: Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations. Ind. Eng. Chem. Res. 51, 5781–5792 (2012)CrossRefGoogle Scholar
  50. 50.
    Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.CMAF-CIO, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations