Journal of Global Optimization

, Volume 62, Issue 2, pp 229–241 | Cite as

Some observations on exclusion regions in branch and bound algorithms

Article

Abstract

In branch and bound algorithms for constrained global optimization, an acceleration technique is to construct regions \({\varvec{x}}^{*}\) around local optimizing points \(\check{x}\), then delete these regions from further search. The result of the algorithm is then a list of those small regions in which all globally optimizing points must lie. If the constructed regions are too small, the algorithm will not be able to easily reject adjacent regions in the search, while, if the constructed regions are too large, the set of optimizing points is not known accurately. We briefly review previous methods of constructing boxes about approximate optimizing points. We then derive a formula for determining the size of a constructed solution-containing region, depending on a small radius \(\epsilon \), and of constructing a containing box \({\varvec{X}}^{*}\supset {\varvec{x}}^{*}\) such that all points in \({\varvec{X}}^{*}\setminus {\varvec{x}}^{*}\) are proven to be infeasible, without the need to actually process them in the branch and bound algorithm. The construction differs in its motivation and concept from previous methods of constructing such boxes \({\varvec{X}}^{*}\). It may be possible to use this technique to reduce the large amount of processing branch and bound algorithms typically require to fathom regions adjacent to optimizing points, and to obtain more accurate bounds on solution sets.

Keywords

Cluster problem Backboxing Epsilon-inflation  Complete search Branch and bound Interval computations 

References

  1. 1.
    Csendes, T. (ed.): Developments in Reliable Computing: Papers presented at the International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, SCAN-98, in Szeged, Hungary, vol. 5(3) of Reliable Computing, Dordrecht, Netherlands. Kluwer, Dordrecht (1999)Google Scholar
  2. 2.
    Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Glob. Optim., Online First, March (2014)Google Scholar
  3. 3.
    Goldsztejn, A., Goualard, F.: Box consistency through adaptive shaving. In: Sung, Y.S., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.-C. (eds.) Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, ACM, pp. 2049–2054, 22–26 March 2010Google Scholar
  4. 4.
    Herzberger, J. (ed.): Topics in Validated Computations: Proceedings of IMACS-GAMM International Workshop on Validated Computation, Oldenburg, Germany, 30 August–3 September 1993, vol. 5 of Studies in Computational Mathematics, Amsterdam, The Netherlands. Elsevier, Amsterdam (1994)Google Scholar
  5. 5.
    Kearfott, R.B.: Abstract generalized bisection and a cost bound. Math. Comput. 49(179), 187–202 (1987)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Number 13 in Nonconvex Optimization and its Applications. Kluwer, Dordrecht (1996)Google Scholar
  7. 7.
    Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83(1, Ser. A), 89–100 (1998)MATHMathSciNetGoogle Scholar
  8. 8.
    Kearfott, R.B.: GlobSol: History, composition, and advice on use. In Bliek, C., et al. (eds.) Global optimization and constraint satisfaction. First international workshop on global constraint optimization and constraint satisfaction, COCOS 2002, Valbonne-Sophia Antipolis, France, October 2–4, 2002. Springer, Berlin (2003)Google Scholar
  9. 9.
    Kearfott, R.B.: GlobSol user guide. Optim. Methods Softw. 24(4–5), 687–708 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kearfott, R.B.: On rigorous upper bounds to a global optimum. J. Glob. Optim. 59(2–3), 459–476 (2014)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kearfott, R.B., Du, K.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5, 253–265 (1994)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kearfott, R.B., Muniswamy, S., Wang, Y., Li, X., Wang, Q.: On smooth reformulations and direct non-smooth computations in global optimization for minimax problems. J. Glob. Optim. 57(4), 1091–1111 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Mayer, G.: Epsilon-inflation in verification algorithms. J. Comput. Appl. Math. 60(1–2), 147–169 (1995)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (ed.) Acta Numerica 2004, pp. 271–369. Cambridge University Press, Cambridge (2004)Google Scholar
  15. 15.
    Neumaier, A.: Global optimization (extensive web site). http://www.mat.univie.ac.at/~neum/glopt.html (2013)
  16. 16.
    Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes [1], pp. 77–104. http://www.ti3.tu-harburg.de/rump/intlab/
  17. 17.
    Rump, S.M.: Verification methods for dense and sparse systems of equations. In: Herzberger [4], pp. 63–136Google Scholar
  18. 18.
    Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Schichl, H.: Mathematical Modeling and Global Optimization. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2008)Google Scholar
  20. 20.
    Schichl, H., Markót, M.C., Neumaier, A.: Exclusion regions for optimization problems, accepted for publication. http://www.mat.univie.ac.at/~neum/ms/exclopt (2013)
  21. 21.
    Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM J. Numer. Anal. 42(1), 383–408 (2004)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. The MIT Press, Cambridge (1997)Google Scholar
  23. 23.
    Van Iwaarden, R.J.: An improved unconstrained global optimization algorithm. PhD thesis, University of Colorado at Denver (1996)Google Scholar
  24. 24.
    Wächter, A.: Homepage of IPOPT. https://projects.coin-or.org/Ipopt (2002)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations