Journal of Global Optimization

, Volume 64, Issue 3, pp 417–431

# Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions

• Yi Chen
• David Y. Gao
Article

## Abstract

This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical duality–triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples.

## Keywords

Global optimization Canonical duality theory Double-well function Log-sum-exp function Polynomial minimisation Minimax problems

## Mathematics Subject Classification

90C26 90C30 90C46

## References

1. 1.
Abdi, H., Nahavandi, S.: Designing optimal fault tolerant jacobian for robotic manipulators. In: IEEE Conf. AIM, pp. 426–431 (2010)Google Scholar
2. 2.
Abdi, H., Nahavandi, S., Maciejewski, A.: Optimal fault-tolerant Jacobian matrix generators for redundant manipulators. In: IEEE Int. Conf. Robot., pp. 4688–4693 (2011)Google Scholar
3. 3.
Banichuk, N.: Minimax approach to structural optimization problems. J. Optim. Theory Appl. 20, 111–127 (1976)
4. 4.
Boyd, S., Kim, S., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8, 67–127 (2007)
5. 5.
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
6. 6.
Chen, Y., Gao, D.: Global solutions of quadratic problems with sphere constraint via canonical dual approach. arXiv:1308.4450 (2013)
7. 7.
Chiang, M.: Geometric Programming for Communication Systems. Now Publishers Inc, Hanover (2005)
8. 8.
Chiang, M., Boyd, S.: Geometric programming duals of channel capacity and rate distortion. IEEE Trans. Inf. Theory 50, 245–258 (2004)
9. 9.
Chiang, M., Tan, C., Palomar, D., O’Neill, D., Julian, D.: Power control by geometric programming. IEEE Trans. Wirel. Commun. 6, 2640–2651 (2007)
10. 10.
Fang, S., Gao, D., Sheu, R., Wu, S.: Canonical dual approach to solving 0–1 quadratic programming problems. J. Ind. Manag. Optim. 4, 125–142 (2008)
11. 11.
Gao, D.: Minimax and triality theory in nonsmooth variational problems. In: Fukushima, M., Liqun, Qi. (eds.) Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 161–180 (1998)Google Scholar
12. 12.
Gao, D.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Global Optim. 17, 127–160 (2000)
13. 13.
Gao, D.: Duality principles in nonconvex systems: theory, methods, and applications. Springer, Netherlands (2000)
14. 14.
Gao, D.: Finite deformation beam models and triality theory in dynamical post-buckling analysis. Int. J. Nonlinear Mech. 35, 103–131 (2000)
15. 15.
Gao, D.: Nonconvex semi-linear problems and canonical duality solutions. Adv. Mech. Math. 2, 261–312 (2003)
16. 16.
Gao, D.: Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Global Optim. 29, 377–399 (2004)
17. 17.
Gao, D.: Complete solutions and extremality criteria to polynomial optimization problems. J. Global Optim. 35, 131–143 (2006)
18. 18.
Gao, D., Ruan, N.: Solutions to quadratic minimization problems with box and integer constraints. J. Global Optim. 47, 463–484 (2010)
19. 19.
Gao, D., Ruan, N., Pardalos, P.: Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Boginski, V. L., Commander, C. W., Pardalos, P. M., Ye, Y. (eds.) Sensors: Theory, Algorithms, and Applications. Springer, Berlin, pp. 37–54 (2012)Google Scholar
20. 20.
Gao, D., Ruan, N., Sherali, H.: Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality. J. Global Optim. 45, 473–497 (2009)
21. 21.
Gao, D., Ruan, N., Sherali, H.: Canonical dual solutions for fixed cost quadratic programs. In: Chinchuluun, A., Pardalos, P. M., Enkhbat, R., Tseveendorj, I. (eds.) Optimization and Optimal Control. Springer, Berlin, pp. 139–156 (2010)Google Scholar
22. 22.
Gao, D., Watson, L., Easterling, D., Thacker, W., Billups, S.: Solving the canonical dual of box- and integer-constrained nonconvex quadratic programs via a deterministic direct search algorithm. Optim. Methods Softw. 26(1), 1–14 (2011)Google Scholar
23. 23.
Gao, D., Wu, C.: On the triality theory for a quartic polynomial optimization problem. J. Ind. Manag. Optim. 8, 229–242 (2012)
24. 24.
Kiwiel, K.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)
25. 25.
Pee, E., Royset, J.: On solving large-scale finite minimax problems using exponential smoothing. J. Optim. Theory Appl. 148, 390–421 (2011)
26. 26.
Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Berlin (1997)
27. 27.
Polak, E., Royset, J., Womersley, R.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory App. 119, 459–484 (2003)
28. 28.
Roberts, R., Yu, H.G. Maciejewski, A.: Characterizing optimally fault-tolerant manipulators based on relative manipulability indices. In IEEE Conf. IROS, pp. 3925–3930 (2007)Google Scholar
29. 29.
Royset, J., Polak, E., Kiureghian, A.: Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems. SIAM J. Optim. 14, 1–34 (2004)
30. 30.
Strang, G.: A minimax problem in plasticity theory. In: Nashed, M. Z. (ed.) Functional Analysis Methods in Numerical Analysis. Springer, Berlin, pp. 319–333 (1979)Google Scholar
31. 31.
Wang, Z., Fang, S., Gao, D., Xing, W.: Canonical dual approach to solving the maximum cut problem. J. Global Optim. 54(2), 341-351 (2012)Google Scholar