Journal of Global Optimization

, Volume 63, Issue 3, pp 515–536 | Cite as

Multi-objective variable neighborhood search: an application to combinatorial optimization problems

  • Abraham Duarte
  • Juan J. Pantrigo
  • Eduardo G. Pardo
  • Nenad Mladenovic
Article

Abstract

Solutions to real-life optimization problems usually have to be evaluated considering multiple conflicting objectives. These kind of problems, known as multi-objective optimization problems, have been mainly solved in the past by using evolutionary algorithms. In this paper, we explore the adaptation of the Variable Neighborhood Search (VNS) metaheuristic to solve multi-objective combinatorial optimization problems. In particular, we describe how to design the shake procedure, the improvement method and the acceptance criterion within different VNS schemas (Reduced VNS, Variable Neighborhood Descent and General VNS), when two or more objectives are considered. We validate these proposals over two multi-objective combinatorial optimization problems.

Keywords

Multi-objective VNS Multi-objective optimization Antibandwidth Cutwidth Knapsack 

Notes

Acknowledgments

This research has been partially supported by the Spanish Ministry of “Economía y Competitividad”, Grants Ref. TIN2011-28151, and TIN2012-35632-C02, and the Government of the Community of Madrid, Grant Ref. S2009/TIC-1542.

References

  1. 1.
    Abdelaziz, F.B., Krichen, S.: A tabu search heuristic for multiobjective knapsack problems. In: Computational Engineering in Systems applications (CESA’98). IEEE Systems Man and Cybernetics, vol. 2, pp. 212–216 (1998)Google Scholar
  2. 2.
    Abdelaziz, F.B., Krichen, S., Chaouachi, J.: A hybrid heuristic for multiobjective knapsack problems. In: Voß, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics. Springer, Berlin, pp. 205–212. ISBN:978-1-4613-7646-0 (1999)Google Scholar
  3. 3.
    Claudio, J.E., dos Santos, R., de Paiva, A.: Multi-objective variable neighborhood search algorithms for a single machine scheduling problem with distinct due windows. Electron. Notes Theor. Comput. Sci. 281, 5–19 (2011)CrossRefGoogle Scholar
  4. 4.
    Coello, C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer, Dordrecht (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Czyzżak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7(1), 34–47. ISSN:1099-1360 (1998)Google Scholar
  6. 6.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Springer, Berlin (2000)CrossRefGoogle Scholar
  7. 7.
    Duarte, A., Sánchez, A., Fernández, F., Cabido, R.: A low-level hybridization between memetic algorithm and vns for the max-cut problem. In: ACM Genetic and Evolutionary Computation Conference (GECCO 05), pp. 999–1006, Washington. ACM (2005)Google Scholar
  8. 8.
    Duarte, A., Martí, R., Resende, M.G.C., Silva, R.M.A.: Grasp with path relinking heuristics for the antibandwidth problem. Networks 58, 171–189 (2011)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Duarte, A., Escudero, L.F., Martí, R., Mladenovic, N., Pantrigo, J.J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39, 3247–3255 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771. ISSN:0965-9978 (2011)Google Scholar
  11. 11.
    Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0-1 multiobjective knapsack problem: the two objectives case. J. Heuristics 6(3), 361–383. ISSN:1381-1231 (2000)Google Scholar
  12. 12.
    Gandibleux, X., Morita, H., Katoh, N.: The supported solutions used as a genetic information in a population heuristic. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) Evolutionary Multi-criterion Optimization, vol. 1993 of Lecture Notes in Computer Science, pp. 429–442. Springer, Berlin. ISBN:978-3-540-41745-3 (2001)Google Scholar
  13. 13.
    Gandibleux, X., Sevaux, M., Sorensen, K., T’kindt, V.: Metaheuristics for Multi-objective Optimization. Springer, Berlin (2004)CrossRefGoogle Scholar
  14. 14.
    Geiger, M.J.: Randomised variable neighbourhood search for multi objective optimisation. In: Proceedings of EU/ME Workshop: Design and Evaluation of Advanced Hybrid Meta-heuristics, pp. 34–42 (2004)Google Scholar
  15. 15.
    Gomes Da Silva, C., Clímaco, J., Figueira, J.: A scatter search method for bi-criteria 0-1-knapsack problems. Eur. J. Oper. Res. 169(2), 373–391. ISSN:0377-2217 (2006)Google Scholar
  16. 16.
    Gomes Da Silva, C., Figueira, J., Clímaco, J.: Integrating partial optimization with scatter search for solving bi-criteria 0,1-knapsack problems. Eur. J. Oper. Res. 177(3), 1656–1677. ISSN:0377-2217 (2007)Google Scholar
  17. 17.
    Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. Technical report, Technical University of Denmark. IMM-REP-1998-7 (1998)Google Scholar
  18. 18.
    Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable neighbourhood search: methods and applications. 4OR Q. J. Oper. Res. 6, 319–360. ISSN:1619-4500 (2008)Google Scholar
  19. 19.
    Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable neighbourhood search: algorithms and applications. Ann. Oper. Res. 175, 367–407 (2010)Google Scholar
  20. 20.
    Knowles, J.: Local-search and hybrid evolutionary algorithms for Pareto optimization. Ph.D. thesis (2002). http://dbkgroup.org/knowles/thesis.html
  21. 21.
    Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers, 214. Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland (revised version) (2006)Google Scholar
  22. 22.
    Liang, Y.-C., Lo, M.-H.: Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. J. Heuristics 16, 511–535 (2010)MATHCrossRefGoogle Scholar
  23. 23.
    Liang, Y.-C., Chen, H.-L.A., Tien, C.-Y.: Variable neighborhood search for multi-objective parallel machine scheduling problems. In: Proceedings of the 8th International Conference on Information and Management Sciences, pp. 519–522 (2009)Google Scholar
  24. 24.
    Lozano, M., Duarte, A., Gortázar, F., Martí, R.: Variable neighborhood search with ejection chains for the antibandwidth problem. J. Heuristics 18, 919–938 (2012)CrossRefGoogle Scholar
  25. 25.
    Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520. ISSN:1475-3995 (2012)Google Scholar
  26. 26.
    Lust, T., Teghem, J., Tuyttens, D.: Very large-scale neighborhood search for solving multiobjective combinatorial optimization problems. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-criterion Optimization, vol. 6576 of Lecture Notes in Computer Science, pp. 254–268. Springer, Berlin. ISBN:978-3-642-19892-2 (2011)Google Scholar
  27. 27.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Mladenovic, N., Urosevic, D., Pérez-Brito, D., García-González, C.G.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 200(1), 14–27. ISSN:0377-2217 (2010)Google Scholar
  29. 29.
    Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem. Ann. Oper. Res. 199. ISSN:0254-5330 (2012)Google Scholar
  30. 30.
    Pardo, E.G., Mladenovic, N., Duarte, A., Pantrigo, J.J.: Variable formulation search for the cutwidth minimization problem. Appl. Soft Comput. 13, 2242–2252 (2013)CrossRefGoogle Scholar
  31. 31.
    Resende, M.G.C., Martí, R., Gallego, M., Duarte, A.: Grasp and path relinking for the max–min diversity problem. Comput. Oper. Res. 37, 498–508 (2010)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Comput. Oper. Res. 35(10), 3331–3346. ISSN:0305-0548 (2008)Google Scholar
  33. 33.
    Schilde, M., Doerner, K.F., Hartl, R.F., Kiechle, G.: Metaheuristics for the bi-objective orienteering problem. Swarm Intell. 3, 179–201 (2009)CrossRefGoogle Scholar
  34. 34.
    Ulungu, E.L.: Optimisation Combinatoire Multicritère : Détermination de l’Ensemble des solutions Efficaces et Méthodes Interactives. Ph.D. thesis, Université de Mons-Hainaut (Mons, Belgium) (1993)Google Scholar
  35. 35.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  36. 36.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C. (ed.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2002)Google Scholar
  37. 37.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolut. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Abraham Duarte
    • 1
  • Juan J. Pantrigo
    • 1
  • Eduardo G. Pardo
    • 1
  • Nenad Mladenovic
    • 2
  1. 1.Dept. Ciencias de la ComputaciónUniversidad Rey Juan CarlosMóstoles, MadridSpain
  2. 2.Laboratory of Industrial and Human Automation control, Mechanical Engineering and Computer Science (LAMIH)Université de ValenciennesValenciennesFrance

Personalised recommendations