Advertisement

Journal of Global Optimization

, Volume 61, Issue 3, pp 407–428 | Cite as

A new mathematical approach for handling DVH criteria in IMRT planning

  • Alexander ScherrerEmail author
  • Filka Yaneva
  • Tabea Grebe
  • Karl-Heinz Küfer
Article

Abstract

The appropriate handling of planning criteria on the cumulative dose-volume histogram (DVH) is a highly problematic issue in intensity-modulated radiation therapy (IMRT) plan optimization. The nonconvexity of DVH criteria and globality of the resulting optimization problems complicate the design of suitable optimization methods, which feature numerical efficiency, reliable convergence and optimality of the results. This work examines the mathematical structure of DVH criteria and proves the valuable properties of isotonicity/antitonicity, connectedness, invexity and sufficiency of the Karush–Kuhn–Tucker condition. These properties facilitate the use of efficient and goal-oriented optimization methods. An exemplary algorithmic realization with feasible direction methods gives rise to a functional framework for interactive IMRT planning on DVH criteria. Numerical examples on real world planning cases prove its practical capability.

Keywords

Intensity-modulated radiation therapy (IMRT) Cumulative dose-volume histogram (DVH) Antitone/isotone, connected and invex functions Sufficient KKT condition Feasible direction methods Reduced gradient method of Wolfe 

Mathematics Subject Classification

26B35 49M37 65K05 90C26 

Notes

Acknowledgments

The fundamental research was partly supported by the U.S. National Institutes of Health, Grant No. 2R01CA103904-05 and German Federal Ministry of Education and Research (BMBF), Grant No. 01 IS 08002D.

References

  1. 1.
    Langer, M., Brown, R., Urie, M., Leong, J., Stracher, M., Shapiro, J.: Large scale optimization of beam weights under dose-volume restrictions. Int. J. Radiat. Oncol. Biol. Phys. 18, 887–893 (1990)CrossRefGoogle Scholar
  2. 2.
    Lee, E.K., Fox, T., Crocker, I.: Optimization of radiosurgery treatment planning via mixed integer programming. Med. Phys. 27, 995–1004 (2000)CrossRefGoogle Scholar
  3. 3.
    Bednarz, G., Michalski, D., Houser, C., Huq, M.S., Xiao, Y., Anne, P.R., Galvin, J.M.: The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys. Med. Biol. 47, 2235–2245 (2002)CrossRefGoogle Scholar
  4. 4.
    Romeijn, H.E., Dempsey, J.F., Li, J.G.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)CrossRefGoogle Scholar
  5. 5.
    Deasy, J.O.: Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med. Phys. 24, 1157–1161 (1997)CrossRefGoogle Scholar
  6. 6.
    Wu, C., Jeraj, R., Mackie, T.R.: The method of intercepts in parameter space for the analysis of local minima caused by dose volume constraints. Phys. Med. Biol. 48, N149–N157 (2003)CrossRefGoogle Scholar
  7. 7.
    Carol, M.P., Nash, R.V., Campbell, R.C., Huber, R., Sternick, E.: The development of a clinically intuitive approach to inverse treatment planning: partial volume prescription and area cost function. In: Leavitt, D.D., Starkschall, G. (eds.) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, pp. 317–319. Medical Physics Publishing (1997)Google Scholar
  8. 8.
    Cho, P.S., Lee, S., Marks II, R.J., Redstone, J.A., Oh, S.: Comparison of algorithms for intensity modulated beam optimization: Projections onto convex sets and simulated annealing. In: Leavitt, D.D., Starkschall, G. (eds.) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, pp. 310–312. Medical Physics Publishing (1997)Google Scholar
  9. 9.
    Holdsworth, C., Kim, M., Liao, J., Phillips, M.H.: A hierarchical evolutionary algorithm for multiobjective optimization in IMRT. Med. Phys. 37, 4986–4997 (2010)CrossRefGoogle Scholar
  10. 10.
    Bortfeld, T.R., Stein, J., Preiser, K.: Clinically relevant intensity modulation optimization using physical criteria. In: Leavitt, D.D., Starkschall, G. (eds.) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, pp. 1–4. Medical Physics Publishing (1997)Google Scholar
  11. 11.
    Michalski, D., Xiao, Y., Censor, Y., Galvin, J.M.: The dose-volume constraint satisfaction problem for inverse treatment planning with field segments. Phys. Med. Biol. 49, 601–616 (2004)CrossRefGoogle Scholar
  12. 12.
    Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy treatment planning problems. Oper. Res. 54, 201–216 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zinchenko, Y., Craig, T., Keller, H., Terlaky, T., Sharpe, M.: Controlling the dose distribution with gEUD-type constraints within the convex radiotherapy optimization framework. Phys. Med. Biol. 53, 3231–3250 (2008)CrossRefGoogle Scholar
  14. 14.
    Xiao, Y., Michalski, D., Censor, Y., Galvin, J.M.: Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms. Phys. Med. Biol. 49, 3227–3245 (2004)Google Scholar
  15. 15.
    Kratt, K., Scherrer, A.: The integration of DVH-based planning aspects into a convex intensity modulated radiation therapy optimization framework. Phys. Med. Biol. 54, N239–N246 (2009)CrossRefGoogle Scholar
  16. 16.
    Zarepisheh, M., Shakourifar, M., Trigila, G., Ghomi, P.S., Couzens, S., Abebe, A., Norena, L., Shang, W., Jiang, S.B., Zinchenko, Y.: A moment-based approach for DVH-guided radiotherapy treatment plan optimization. Phys. Med. Biol. 58, 1869–1887 (2013)CrossRefGoogle Scholar
  17. 17.
    Spirou, S.V., Chui, C.S.: A gradient inverse planning algorithm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)CrossRefGoogle Scholar
  18. 18.
    Halabi, T.F., Craft, D.L., Bortfeld, T.R.: Dose-volume objectives in multi-criteria optimization. Phys. Med. Biol. 51, 3809–3818 (2006)CrossRefGoogle Scholar
  19. 19.
    Censor, Y., Ben-Israel, A., Xiao, Y., Galvin, J.M.: On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra Appl. 428, 1406–1420 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Küfer, K.H., Monz, M., Scherrer, A., Süss P., Alonso, F., Azizi Sultan, A.S., Bortfeld, T.R., Thieke, C.: Multicriteria optimization in intensity-modulated radiotherapy planning. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Optimization in Medicine, chapter 5, pp. 123–168. Kluwer, Dordrecht (2009)Google Scholar
  21. 21.
    Monz, M., Küfer, K.H., Bortfeld, T.R., Thieke, C.: Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. Phys. Med. Biol. 53, 985–998 (2008)CrossRefGoogle Scholar
  22. 22.
    Craft, D.L., Bortfeld, T.R.: How many plans are needed in an IMRT multi-objective plan database? Med. Phys. 53, 2785–2796 (2008)CrossRefGoogle Scholar
  23. 23.
    Niemierko, A.: Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med. Phys. 24, 103–110 (1997)CrossRefGoogle Scholar
  24. 24.
    Niemierko, A.: A generalized concept of equivalent uniform dose (EUD). Med. Phys. 26, 1100 (1999)Google Scholar
  25. 25.
    Yaneva, F.: Modeling and Navigation of Tumor Conformality in IMRT Planning. Master’s thesis. Faculty of Mathematics, Technical University of Kaiserslautern, Germany (2009)Google Scholar
  26. 26.
    Lünberger, D.: Linear and Nonlinear Programming. Addison Wesley, Reading, MA (1984)zbMATHGoogle Scholar
  27. 27.
    Bazaraa, M., Sherali, H.D., Shetty, C.M.: Nonlinear Programming—Theory and Algorithms. Wiley, New York (1993)zbMATHGoogle Scholar
  28. 28.
    Zangwill, W.: Nonlinear Programming: A Unified Approach. Prentice-Hall Inc., Englewood Cliffs, NJ (1969)zbMATHGoogle Scholar
  29. 29.
    Hanson, M.A., Mond, B.: Necessary and sufficient conditions in constrained optimization. Math. Program. 37, 51–58 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)zbMATHGoogle Scholar
  31. 31.
    Süss, P.: A Primal-Dual Barrier Algorithm for the IMRT Planning Problem—An Application of Optimization-Driven Adaptive Discretization. PhD thesis. Faculty of Mathematics, Technical University of Kaiserslautern, Germany (2008)Google Scholar
  32. 32.
    Craft, D.L., Halabi, T.F., Shih, H.A., Bortfeld, T.R.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)CrossRefGoogle Scholar
  33. 33.
    Serna, J.I., Monz, M., Küfer, K.H., Thieke, C.: Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning. Phys. Med. Biol. 54, 6299–6311 (2009)CrossRefGoogle Scholar
  34. 34.
    Bentzen, S.M., Constine, L.S., Deasy, J.O., Eisbruch, A., Jackson, A., Marks, L.B., Ten Haken, R.K., Yorke, E.D.: Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 76, S3–S9 (2010)CrossRefGoogle Scholar
  35. 35.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic Press, New York (1970)Google Scholar
  36. 36.
    Craven, B.D., Glover, B.M.: Invex functions and duality. J. Aust. Math. Soc. Ser. A 39, 1–20 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Hanson, M.A.: On sufficiency of the Kuhn–Tucker condition. J. Math Anal. Appl. 80, 545–550 (1981)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander Scherrer
    • 1
    Email author
  • Filka Yaneva
    • 2
  • Tabea Grebe
    • 1
  • Karl-Heinz Küfer
    • 1
  1. 1.Department of OptimizationFraunhofer Institute for Industrial Mathematics (ITWM)KaiserslauternGermany
  2. 2.Department of Medical Biometry and Computer ScienceUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations