Journal of Global Optimization

, Volume 64, Issue 1, pp 3–16 | Cite as

On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach

  • Benjamin Martin
  • Alexandre Goldsztejn
  • Laurent Granvilliers
  • Christophe Jermann


The global resolution of constrained non-linear bi-objective optimization problems (NLBOO) aims at covering their Pareto-optimal front which is in general a one-manifold in \(\mathbb {R}^2\). Continuation methods can help in this context as they can follow a continuous component of this front once an initial point on it is provided. They constitute somehow a generalization of the classical scalarization framework which transforms the bi-objective problem into a parametric single-objective problem. Recent works have shown that they can play a key role in global algorithms dedicated to bi-objective problems, e.g. population based algorithms, where they allow discovering large portions of locally Pareto optimal vectors, which turns out to strongly support diversification. The contribution of this paper is twofold: we first provide a survey on continuation techniques in global optimization methods for NLBOO, identifying relations between several work and usual limitations, among which the ability to handle inequality constraints. We then propose a rigorous active set management strategy on top of a continuation method based on interval analysis, certified with respect to feasibility, local optimality and connectivity. This allows overcoming the latter limitation as illustrated on a representative bi-objective problem.


Non-linear bi-objective optimization Continuation  Interval analysis Constraints activity 


  1. 1.
    Allgower, E.L., Georg, K.: Introduction to numerical continuation methods. In: Classics in Applied Mathematics, vol. 45. SIAM, Philadelphia (2003)Google Scholar
  2. 2.
    Askar, S., Tiwari, A.: Multi-objective optimisation problems: a symbolic algorithm for performance measurement of evolutionary computing techniques. In: Ehrgott, M., et al. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 5467, pp. 169–182. Springer, Berlin (2009)CrossRefGoogle Scholar
  3. 3.
    Beltrán, C., Leykin, A.: Certified numerical homotopy tracking. Exp. Math. 21(1), 69–83 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Beyn, W.-J., Effenberger, C., Kressner, D.: Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems. Numer. Math. 119, 489–516 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Boissonnat, J.-D., Ghosh, A.: Triangulating smooth submanifolds with light scaffolding. Math. Comput. Sci. 4, 431–461 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  8. 8.
    Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44(2), 249–273 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Erfani, T., Utyuzhnikov, S.: Directed search domain: a method for even generation of the pareto frontier in multiobjective optimization. Eng. Optim. 43(5), 467–484 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Faudot, D., Michelucci, D.: A new robust algorithm to trace curves. Reliab. Comput. 13(4), 309–324 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Goldsztejn, A., Granvilliers, L.: A new framework for sharp and efficient resolution of NCSP with manifolds of solutions. Constraints 15(2), 190–212 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Goualard F.: GAOL 3.1.1: Not Just Another Interval Arithmetic Library. LINA, 4.0 edition (2006)Google Scholar
  13. 13.
    Granvilliers, L., Benhamou, F.: Algorithm 852: realPaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guddat, J., Th. Jongen, H., Nowack, D.: Parametric optimization: pathfollowing with jumps. In: Gmez-Fernandez, J.A., et al. (eds.) Approximation and Optimization. Lecture Notes in Mathematics, vol. 1354, pp. 43–53. Springer, Berlin (1988)CrossRefGoogle Scholar
  15. 15.
    Guddat, J., Vazquez, F.G., Nowack, D., Ruckmann, J.: A modified standard embedding with jumps in nonlinear optimization. Eur. J. Oper. Res. 169(3), 1185–1206 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Harada, K., Sakuma, J., Kobayashi, S.: Local search for multiobjective function optimization: pareto descent method. In: GECCO, pp. 659–666. ACM (2006)Google Scholar
  17. 17.
    Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA. In: GECCO, pp. 813–820. ACM (2007)Google Scholar
  18. 18.
    Harada, K., Sakuma, J., Ono, I., Kobayashi, S.: Constraint-handling method for multi-objective function optimization: pareto descent repair operator. In: Obayashi, S., et al. (eds.) Evolutionary Multi-Criterion Optimization. volume 4403 of LNCS, pp. 156–170. Springer, Berlin (2007)Google Scholar
  19. 19.
    Hartikainen, M., Miettinen, K., Wiecek, M.M.: Constructing a pareto front approximation for decision making. Math. Meth. Oper. Res. 73(2), 209–234 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hartikainen, M., Miettinen, K., Wiecek, M.M.: Paint: pareto front interpolation for nonlinear multiobjective optimization. Comput. Optim. Appl. 52(3), 845–867 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theor. Appl. 110(3), 557–583 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach, vol. 135. Birkäuser, Basel (2001)CrossRefGoogle Scholar
  23. 23.
    Kearfott, B., Xing, Z.: An interval step control for continuation methods. SIAM J. Numer. Anal. 31(3), 892–914 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Lara, A., Sanchez, G., Coello, C., Schütze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2010)CrossRefGoogle Scholar
  25. 25.
    Leyffer, S.: A complementarity constraint formulation of convex multiobjective optimization problems. INFORMS J. Comput. 21(2), 257–267 (April 2009)Google Scholar
  26. 26.
    Lovison, A.: Singular continuation: generating piecewise linear approximations to pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Lovison, A.: Global search perspectives for multiobjective optimization. J. Glob. Optim. 57(2), 385–398 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Lundberg, B., Poore, A.: Numerical continuation and singularity detection methods for parametric nonlinear programming. SIAM J. Optim. 3(1), 134–154 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Certified parallelotope continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Messac, A., Ismail-Yahaya, A., Mattson, C.: The normalized normal constraint method for generating the pareto frontier. Struct. Multidiscip. Optim. 25(2), 86–98 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Messac, A., Mattson, C.: Generating well-distributed sets of pareto points for engineering design using physical programming. Optim. Eng. 3(4), 431–450 (2002)zbMATHCrossRefGoogle Scholar
  32. 32.
    Messac, A., Mattson, C.: Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA J. 42, 2101–2111 (2004)CrossRefGoogle Scholar
  33. 33.
    Miettinen, K.: Nonlinear Multiobjective Optimization, volume 12 of International Series in Operations Research and Management Science. Kluwer, Dordrecht (1999)Google Scholar
  34. 34.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1991)Google Scholar
  35. 35.
    Pereyra, V.: Fast computation of equispaced pareto manifolds and pareto fronts for multiobjective optimization problems. Math. Comput. Simul. 79(6), 1935–1947 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Pereyra, V., Saunders, M., Castillo, J.: Equispaced pareto front construction for constrained bi-objective optimization. Math. Comput. Model. 57(9–10), 2122–2131 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Porta, J.-M., Jaillet, L., Bohigas, O.: Randomized path planning on manifolds based on higher-dimensional continuation. Int. J. Robot. Res. 31(2), 201–215 (2012)CrossRefGoogle Scholar
  38. 38.
    Potschka, A., Logist, F., Van Impe, J., Bock, H.: Tracing the Pareto frontier in bi-objective optimization problems by ODE techniques. Numer. Algorithms 57(2), 217–233 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Rakowska, J., Haftka, R., Watson, L.: An active set algorithm for tracing parametrized optima. Struct. Optim. 3(1), 29–44 (1991)CrossRefGoogle Scholar
  40. 40.
    Rakowska, J., Haftka, R., Watson, L.: Multi-objective control-structure optimization via homotopy methods. SIAM J. Optim. 3(3), 654–667 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Rao, J., Papalambros, P.: A non-linear programming continuation strategy for one parameter design optimization problems. In: ASME Design Automation Conference, pp. 77–89 (1989)Google Scholar
  42. 42.
    Rigoni, E., Poles, S.: NBI and MOGA-II, two complementary algorithms for multi-objective optimizations. In: Practical Approaches to Multi-Objective Optimization, number 04461 in Dagstuhl, Seminar (2005)Google Scholar
  43. 43.
    Ringkamp, M., Ober-Blbaum, S., Dellnitz, M., Schütze, O.: Handling high-dimensional problems with multi-objective continuation methods via successive approximation of the tangent space. Eng. Optim. 44(9), 1117–1146 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theor. Appl. 126(3), 473–501 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Schütze, O., Coello, C.: Coello, S. Mostaghim, E. Talbi, and M. Dellnitz. Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems. Eng. Optim. 40, 383–402 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numerical treatment of multi-objective optimization problems. In: Branke, J. et al. (ed.) Practical Approaches to Multi-Objective Optimization, number 04461 in Dagstuhl Seminar (2005)Google Scholar
  47. 47.
    Schütze, O., Lara, A., Coello Coello, C.: Evolutionary continuation methods for optimization problems. In: GECCO, pp. 651–658. ACM (2009)Google Scholar
  48. 48.
    Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., et al. (eds.) The Merging of Disciplines in Pure, Applied and Computational Mathematics, pp. 185–196. Springer, New York (1986)Google Scholar
  49. 49.
    Utyuzhnikov, S., Fantini, P., Guenov, M.: A method for generating a well-distributed pareto set in nonlinear multiobjective optimization. J. Comput. Appl. Math. 223(2), 820–841 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhang, Z.: Immune optimization algorithm for constrained nonlinear multiobjective optimization problems. Appl. Soft Comput. 7(3), 840–857 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Benjamin Martin
    • 1
  • Alexandre Goldsztejn
    • 2
  • Laurent Granvilliers
    • 1
  • Christophe Jermann
    • 1
  1. 1.Université de NantesNantesFrance
  2. 2.CNRSNantesFrance

Personalised recommendations