Journal of Global Optimization

, Volume 59, Issue 2–3, pp 503–526 | Cite as

ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations

Article

Abstract

This manuscript introduces ANTIGONE, Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations, a general mixed-integer nonlinear global optimization framework. ANTIGONE is the evolution of the Global Mixed-Integer Quadratic Optimizer, GloMIQO, to general nonconvex terms. The purpose of this paper is to show how the extensible structure of ANTIGONE realizes our previously-proposed mixed-integer quadratically-constrained quadratic program and mixed-integer signomial optimization computational frameworks. To demonstrate the capacity of ANTIGONE, this paper presents computational results on a test suite of \(2{,}571\) problems from standard libraries and the open literature; we compare ANTIGONE to other state-of-the-art global optimization solvers.

Keywords

MINLP Deterministic global optimization Optimization software Branch-and-cut 

Supplementary material

10898_2014_166_MOESM1_ESM.pdf (649 kb)
Supplementary material 1 (pdf 648 KB)

References

  1. 1.
    Achterberg, T.: SCIP: Solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)Google Scholar
  2. 2.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR (2008)Google Scholar
  3. 3.
    Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)Google Scholar
  4. 4.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice differentiable NLPs-II. Implementation and computional results. Comput. Chem. Eng. 22, 1159–1179 (1998b)Google Scholar
  5. 5.
    Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998a)Google Scholar
  6. 6.
    Ahmetović, E., & Grossmann, I.E.: Integrated process water networks design problem (2010). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=101
  7. 7.
    Ahmetović, E., Grossmann, I.E.: Global superstructure optimization for the design of integrated process water networks. AIChE J. 57(2), 434–457 (2011)Google Scholar
  8. 8.
    Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)Google Scholar
  9. 9.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen. D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 3rd edn (1999)Google Scholar
  10. 10.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)Google Scholar
  11. 11.
    Anstreicher, K.M.: Recent advances in the solution of quadratic assignment problems. Math. Program. 97(1–2), 27–42 (2003)Google Scholar
  12. 12.
    Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)Google Scholar
  13. 13.
    Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012)Google Scholar
  14. 14.
    Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)Google Scholar
  15. 15.
    Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)Google Scholar
  16. 16.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131, 5 (2013)Google Scholar
  17. 17.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Method. Softw. 24(4–5), 597–634 (2009)Google Scholar
  18. 18.
    Berthold, T., Gleixner, A.M., Heinz, S., Vigerske, S.: Analyzing the computational impact of MIQCP solver components. Numer. Algebr. Control Optim. 2(4), 739–748 (2012a)Google Scholar
  19. 19.
    Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In Lee, J., Leyffer S. (eds) Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 427–444. Springer, New York (2012)Google Scholar
  20. 20.
    Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)Google Scholar
  21. 21.
    Bragalli, C., DAmbrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical MINLP approach. Optim. Eng. 13, 219–246 (2012)Google Scholar
  22. 22.
    Brönnimann, H., Melquiond, G., Pion, S.: The Boost interval arithmetic library. In: Proceedings of the 5th Conference on Real Numbers and Computers, pp. 65–80. Lyon, France (2003)Google Scholar
  23. 23.
    Brönnimann, H., Melquiond, G., Pion, S.: The design of the Boost interval arithmetic library. Theor. Comput. Sci. 351, 111–118 (2006)Google Scholar
  24. 24.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)Google Scholar
  25. 25.
    Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)Google Scholar
  26. 26.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib: a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput 15(1), 114–119 (2003)Google Scholar
  27. 27.
    Bussieck, M.R., Vigerske, S.: MINLP solver software. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2010)Google Scholar
  28. 28.
    Caballero, J.A., Grossmann, I.E.: Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind. Eng. Chem. Res. 40(10), 2260–2274 (2001)Google Scholar
  29. 29.
    Caballero, J.A., Grossmann, I.E.: Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput. Chem. Eng. 28(11), 2307–2329 (2004)Google Scholar
  30. 30.
    Caballero, J.A., Grossmann, I.E.: Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences. Ind. Eng. Chem. Res. 45(25), 8454–8474 (2006)Google Scholar
  31. 31.
    Caballero, J.A., Grossmann, I.E.: Optimal separation sequences based on distillation: from conventional to fully thermally coupled systems (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=69
  32. 32.
    Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47, 661–685 (2010)Google Scholar
  33. 33.
    Castro, P., Novais, A.: Optimal periodic scheduling of multistage continuous plants with single and multiple time grid formulations. Ind. Eng. Chem. Res. 46(11), 3669–3683 (2007)Google Scholar
  34. 34.
    Castro, P., Novais, A.: Periodic scheduling of continuous multiproduct plants (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=34
  35. 35.
    Castro, P.M., Matos, H.A., Novais, A.Q.: An efficient heuristic procedure for the optimal design of wastewater treatment systems. Resour. Conserv. Recycl. 50(2), 158–185 (2007)Google Scholar
  36. 36.
    Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013)Google Scholar
  37. 37.
    Castro, P.M., Teles, J.P., Novais, A.Q.: Linear program-based algorithm for the optimal design of wastewater treatment systems. Clean Technol. Environ. Policy 11(1), 83–93 (2009)Google Scholar
  38. 38.
    Chang, Y.J., Sahinidis, N.V.: Global optimization in stabilizing controller design. J. Glob. Optim. 38, 509–526 (2007)Google Scholar
  39. 39.
    Chang, Y.J., Sahinidis, N.V.: Stabilizing controller design and the belgian chocolate problem (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=57
  40. 40.
    D’Ambrosio, C., Bragalli, C., Lee, J., Lodi, A., Toth, P.: Optimal design of water distribution networks (2011). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=134
  41. 41.
    D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated practical overview. Ann. Oper. Res. 204, 301–320 (2013)Google Scholar
  42. 42.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)Google Scholar
  43. 43.
    Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429 (2010)Google Scholar
  44. 44.
    Domes, F., Neumaier, A.: Rigorous enclosures of ellipsoids and directed cholesky factorizations. SIAM J. Matrix Anal. Appl. 32, 262–285 (2011)Google Scholar
  45. 45.
    Duran, M.A., Grossmann, I.E.: A mixed-integer nonlinear programming algorithm for process systems synthesis. AIChE J. 32(4), 592–606 (1986a)Google Scholar
  46. 46.
    Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986b)Google Scholar
  47. 47.
    Escobar, M., Grossmann, I.E.: Mixed-integer nonlinear programming models for optimal simultaneous synthesis of heat exchangers network (2010). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=93
  48. 48.
    Flores-Tlacuahuac, A., Grossmann, I.E.: Simultaneous cyclic scheduling and control of a multiproduct cstr (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=71
  49. 49.
    Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)Google Scholar
  50. 50.
    Floudas, C.A.: Deterministic Global Optimization : Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (2000)Google Scholar
  51. 51.
    Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)Google Scholar
  52. 52.
    Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)Google Scholar
  53. 53.
    Floudas, C.A., Pardalos, P.M.: State-of-the-art in global optimization: computational methods and applications—Preface. J. Glob. Optim. 7(2), 113 (1995)Google Scholar
  54. 54.
    Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Dordrecht (1999)Google Scholar
  55. 55.
    Fourer, R., Gay, D.M., Kernighan, B.W.: The AMPL Book. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks/Cole Publishing Company, Stamford (2002)Google Scholar
  56. 56.
    Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., Schichl, H.: Convexity and concavity detection in computational graphs: tree walks for convexity assessment. INFORMS J. Comput 22(1), 26–43 (2010)Google Scholar
  57. 57.
    Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of convex relaxations using automated code generation techniques. Optim. Eng. 3, 305–326 (2002)Google Scholar
  58. 58.
    Gau, C.Y., Schrage, L.E.: Implementation and testing of a branch-and-bound based method for deterministic global optimization: operations research applications. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 145–164. Kluwer, Dordrecht (2003)Google Scholar
  59. 59.
    Geoffrion, A.M.: Elements of large-scale mathematical programming. 1. Concepts. Manag. Sci. Ser. Theory 16(11), 652–675 (1970)Google Scholar
  60. 60.
    Gopalakrishnan, A., Biegler, L.: MINLP and MPCC formulations for the cascading tanks problem (2011). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=140
  61. 61.
    Gounaris, C.E., First, E.L., Floudas, C.A.: Estimation of diffusion anisotropy in microporous crystalline materials and optimization of crystal orientation in membranes. J. Chem. Phys. 139(12), 124703 (2013)Google Scholar
  62. 62.
    Gounaris, C.E., Floudas, C.A.: Convexity of products of univariate functions and convexification transformations for geometric programming. J. Optim. Theory Appl. 138, 407–427 (2008)Google Scholar
  63. 63.
    Grossmann, I.E.: Advances in mathematical programming models for enterprise-wide optimization. Comput. Chem. Eng. 47, 2–18 (2012)Google Scholar
  64. 64.
    Grossmann, I.E., Guillén-Gosálbez, G.: Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput. Chem. Eng. 34(9), 1365–1376 (2010)Google Scholar
  65. 65.
    Grossmann, I.E., Sargent, R.W.H.: Optimum design of multipurpose chemical plants. Ind. Eng. Chem. Process Des. Dev. 18(2), 343–348 (1979)Google Scholar
  66. 66.
    Guillén-Gosálbez, G., Pozo, C.: Optimization of metabolic networks in biotechnology (2010). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=81
  67. 67.
    Guillén-Gosálbez, G., Sorribas, A.: Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses. BMC Bioinform. 10, 386 (2009)Google Scholar
  68. 68.
    Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43, 299–328 (2009)Google Scholar
  69. 69.
    Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 1–33 (2013). doi:10.1007/s10898-013-0125-3
  70. 70.
    Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)Google Scholar
  71. 71.
    Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. 52, 391–409 (2012)Google Scholar
  72. 72.
    Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Program. 137(1–2), 371–408 (2013)Google Scholar
  73. 73.
    Khor, C.S., Chachuat, B., Shah, N.: Fixed-flowrate total water network synthesis under uncertainty with risk management. J. Clean. Prod. (2014). doi:10.1016/j.jclepro.2014.01.023
  74. 74.
    Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)Google Scholar
  75. 75.
    Kolodziej, S.P., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57(4), 1039–1063 (2013a)Google Scholar
  76. 76.
    Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013b)Google Scholar
  77. 77.
    Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10(1), 47–65 (2005)Google Scholar
  78. 78.
    Lee, H., Pinto, J.M., Grossmann, I.E., Park, S.: Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind. Eng. Chem. Res. 35(5), 1630–1641 (1996)Google Scholar
  79. 79.
    Li, J., Li, A., Karimi, I.A., Srinivasan, R.: Improving the robustness and efficiency of crude scheduling algorithms. AIChE J. 53(10), 2659–2680 (2007)Google Scholar
  80. 80.
    Li, J., Misener, R., Floudas, C.A.: Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012a)Google Scholar
  81. 81.
    Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE J. 57(8), 2120–2135 (2011)Google Scholar
  82. 82.
    Li, X., Tomasgard, A., Barton, P.I.: Decomposition strategy for the stochastic pooling problem. J. Glob. Optim. 54(4), 765–790 (2012b)Google Scholar
  83. 83.
    Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003)Google Scholar
  84. 84.
    Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)Google Scholar
  85. 85.
    Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)Google Scholar
  86. 86.
    Locatelli, M., Schoen, F.: On convex envelopes for bivariate functions over polytopes. Math. Program. (2012). doi:10.1007/s10107-012-0616-x
  87. 87.
    Loiola, E.M., Maia de Abreu, N.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)Google Scholar
  88. 88.
    Lougee-Heimer, R.: The common optimization INterface for operations research: promoting open-source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)Google Scholar
  89. 89.
    Lundell, A., Skjäl, A., Westerlund, T.: A reformulation framework for global optimization. J. Glob. Optim. 57(1), 115–141 (2013)Google Scholar
  90. 90.
    Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. 43, 391–405 (2009)Google Scholar
  91. 91.
    Lundell, A., Westerlund, T.: Convex underestimation strategies for signomial functions. Optim. Methods Softw. 24(4–5), 505–522 (2009)Google Scholar
  92. 92.
    Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial programming problems. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 349–369. Springer, New York (2012)Google Scholar
  93. 93.
    Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)Google Scholar
  94. 94.
    Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351–369 (1997)Google Scholar
  95. 95.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part 1-convex underestimating problems. Math. Program. 10(1), 147–175 (1976)Google Scholar
  96. 96.
    McDonald, C.M., Floudas, C.A.: Glopeq: a new computational tool for the phase and chemical equilibrium problem. Comput. Chem. Eng. 21(1), 1–23 (1996)Google Scholar
  97. 97.
  98. 98.
    Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer, Dordrecht (2003)Google Scholar
  99. 99.
    Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29(2), 125–155 (2004)Google Scholar
  100. 100.
    Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)Google Scholar
  101. 101.
    Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)Google Scholar
  102. 102.
    Misener, R., Floudas, C.A.: Global optimization of mixed-integer models with quadratic and signomial functions: a review. Appl. Comput. Math. 11(3), 317–336 (2012a)Google Scholar
  103. 103.
    Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. B 136, 155–182 (2012b)Google Scholar
  104. 104.
    Misener, R., Floudas, C.A.: A framework for globally optimizing mixed-integer signomial programs. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0396-3
  105. 105.
    Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1), 3–50 (2013b)Google Scholar
  106. 106.
    Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically-generated cutting planes for mixed-integer quadratically-constrained quadratic programs and their incorporation into GloMIQO 2.0. 2012. Submitted for PublicationGoogle Scholar
  107. 107.
    Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)Google Scholar
  108. 108.
    Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)Google Scholar
  109. 109.
    Mouret, S., Grossmann, I.E.: Crude-oil operations scheduling (2010). Available from CyberInfrastructure for MINLP [A collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=117
  110. 110.
    Mouret, S., Grossmann, I.E., Pestiaux, P.: A novel priority-slot based continuous-time formulation for crude-oil scheduling problems. Ind. Eng. Chem. Res. 48(18), 8515–8528 (2009)Google Scholar
  111. 111.
    Neun, W., Sturm, T., Vigerske, S. (2010) Supporting global numerical optimization of rational functions by generic symbolic convexity tests. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing, volume 6244 of Lecture Notes in Computer Science, pp. 205–219 (2010)Google Scholar
  112. 112.
    Niknam, T., Khodaei, A., Fallahi, F.: A new decomposition approach for the thermal unit commitment problem. Appl. Energy 86(9), 1667–1674 (2009)Google Scholar
  113. 113.
    Nowak, I.: Relaxation and decomposition methods for mixed integer nonlinear programming. International series of numerical mathematics, Birkhäuser (2005). ISBN 9783764372385Google Scholar
  114. 114.
    Nyberg, A., Grossmann, I.E., Westerlund, T.: The optimal design of a three-echelon supply chain with inventories under uncertainty (2012). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=157
  115. 115.
    Nyberg, A., Grossmann, I.E., Westerlund, T.: An efficient reformulation of the multiechelon stochastic inventory system with uncertain demands. AIChE J. 59(1), 23–28 (2013)Google Scholar
  116. 116.
    Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6(1), 39–76 (1995)Google Scholar
  117. 117.
    Ruiz, J.P., Grossmann, I.E.: Water treatment network design (2009). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=24
  118. 118.
    Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)Google Scholar
  119. 119.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)Google Scholar
  120. 120.
    Sawaya, N.W.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Carnegie Mellon University, PhD in Chemical Engineering (2006)Google Scholar
  121. 121.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124(1–2), 383–411 (2010)Google Scholar
  122. 122.
    Scozzari, A., Tardella, F.: A clique algorithm for standard quadratic programming. Discret. Appl. Math. 156(13), 2439–2448 (2008)Google Scholar
  123. 123.
    Selot, A., Kuok, L.K., Robinson, M., Mason, T.L., Barton, P.I.: A short-term operational planning model for natural gas production systems. AIChE J. 54(2), 495–515 (2008)Google Scholar
  124. 124.
    Sherali, H., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programming problems. J. Glob. Optim. 52(3), 447–469 (2012)Google Scholar
  125. 125.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (1999)Google Scholar
  126. 126.
    Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)Google Scholar
  127. 127.
    Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic-programming problems. J. Glob. Optim. (7): 1, 1–31 (1995)Google Scholar
  128. 128.
    Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)Google Scholar
  129. 129.
    Shikhman, V., Stein, O.: On jet-convex functions and their tensor products. Optimization 61(6), 717–731 (2012)Google Scholar
  130. 130.
    Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999)Google Scholar
  131. 131.
    Tadayon, B., Smith, J.C.: Algorithms for an integer multicommodity network flow problem with node reliability considerations. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0378-5.
  132. 132.
    Tardella, F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discret. Appl. Math. 22, 191–195 (1988/89)Google Scholar
  133. 133.
    Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer, Dordrecht (2003)Google Scholar
  134. 134.
    Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)Google Scholar
  135. 135.
    Tawarmalani, M., Richard, J.-P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138(1–2), 531–577 (2013)Google Scholar
  136. 136.
    Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 133–154 (2001)Google Scholar
  137. 137.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Applications, Software, and Applications. Nonconvex Optimization and Its Applications. Kluwer, Norwell (2002)Google Scholar
  138. 138.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)Google Scholar
  139. 139.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)Google Scholar
  140. 140.
    Teles, J., Castro, P.M., Novais, A.Q.: Lp-based solution strategies for the optimal design of industrial water networks with multiple contaminants. Chem. Eng. Sci. 63(2), 376–394 (2008)Google Scholar
  141. 141.
    Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)Google Scholar
  142. 142.
    Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005a)Google Scholar
  143. 143.
    Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3), 531–557 (2005b)Google Scholar
  144. 144.
    Vigerske, S.: COIN-OR/GAMSLinks. https://projects.coin-or.org/GAMSlinks/ (2011)
  145. 145.
    Vigerske, S.: Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming. Humboldt-University Berlin, PhD in Mathematics (2012)Google Scholar
  146. 146.
    Yee, T.F., Grossmann, I.E.: Simultaneous optimization models for heat integrationII. Heat exchanger network synthesis. Comput. Chem. Eng. 14(10), 1165–1184 (1990)Google Scholar
  147. 147.
    You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for large-scale supply chain design with stochastic inventory management. Ind. Eng. Chem. Res. 47(20), 7802–7817 (2008)Google Scholar
  148. 148.
    You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for supply chain design with stochastic inventory management (2009a). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=3
  149. 149.
    You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models for the optimal design of multi-product batch plant (2009b). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=48
  150. 150.
    You, F., Grossmann, I.E.: Integrated multi-echelon supply chain design with inventories under uncertainty: MINLP models, computational strategies. AIChE J. 56(2), 419–440 (2010)Google Scholar
  151. 151.
    Zondervan, E., Grossmann, I.E.: A deterministic security constrained unit commitment model (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=41

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Chemical EngineeringImperial College LondonSouth KensingtonUK

Personalised recommendations