Journal of Global Optimization

, Volume 59, Issue 2–3, pp 277–306 | Cite as

Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems

  • Pedro M. CastroEmail author
  • Ignacio E. Grossmann


We address nonconvex mixed-integer bilinear problems where the main challenge is the computation of a tight upper bound for the objective function to be maximized. This can be obtained by using the recently developed concept of multiparametric disaggregation following the solution of a mixed-integer linear relaxation of the bilinear problem. Besides showing that it can provide tighter bounds than a commercial global optimization solver within a given computational time, we propose to also take advantage of the relaxed formulation for contracting the variables domain and further reduce the optimality gap. Through the solution of a real-life case study from a hydroelectric power system, we show that this can be an efficient approach depending on the problem size. The relaxed formulation from multiparametric formulation is provided for a generic numeric representation system featuring a base between 2 (binary) and 10 (decimal).


Global optimization Mixed integer nonlinear programming  Mixed integer linear programming Scheduling  Hydroelectric system 



Pedro Castro acknowledges financial support from FEDER (Programa Operacional Factores de Competitividade—COMPETE) and Fundação para a Ciência e Tecnologia through project FCOMP-01-0124-FEDER-020764, and from the Luso-American Foundation under the 2013 Portugal-U.S. Research Networks Program.


  1. 1.
    Carrión, M., Arroyo, J.M.: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21(3), 1371–1378 (2006)CrossRefGoogle Scholar
  2. 2.
    Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Hydro energy systems management in Portugal: profit-based evaluation of a mixed-integer nonlinear approach. Energy 36, 500–507 (2011)CrossRefGoogle Scholar
  3. 3.
    García-González, J., Parrilla, E., Mateo, A.: Risk-averse profit-based optimal scheduling of a hydro-chain in the day-ahead electricity market. Eur. J. Oper. Res. 181, 1354–1369 (2007)CrossRefGoogle Scholar
  4. 4.
    Quesada, I., Grossmann, I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)CrossRefGoogle Scholar
  5. 5.
    Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)CrossRefGoogle Scholar
  6. 6.
    Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(2), 1027–1037 (2006)CrossRefGoogle Scholar
  7. 7.
    Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)CrossRefGoogle Scholar
  8. 8.
    Jezowski, J.: Review of water network design methods with literature annotations. Indus. Eng. Chem. Res. 49, 4475–4516 (2010)CrossRefGoogle Scholar
  9. 9.
    Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AIChE J. 58(8), 2320–2335 (2012)CrossRefGoogle Scholar
  10. 10.
    Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)CrossRefGoogle Scholar
  11. 11.
    Nápoles-Rivera, F., Ponce-Ortega, J.M., El-Halwagi, M.M., Jiménez-Gutiérrez, A.: Global optimization of mass and property integration networks with in-plant property interceptors. Chem. Eng. Sci. 65, 4363–4377 (2010)CrossRefGoogle Scholar
  12. 12.
    Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations for solving non-convex trim loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998)CrossRefGoogle Scholar
  13. 13.
    Zorn, K., Sahinidis, N.V.: Computational experience with applications of bilinear cutting planes. Indus. Eng. Chem. Res. 52, 7514–7525 (2013)CrossRefGoogle Scholar
  14. 14.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 147–175 (1976)CrossRefGoogle Scholar
  15. 15.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8, 201–205 (1996)CrossRefGoogle Scholar
  16. 16.
    Misener, R., Floudas, C.A.: GloMIQO: Global mixed-integer quadratic optimizer. J. Global Optim. 53, 3–50 (2013)CrossRefGoogle Scholar
  17. 17.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications. Kluwer Academic Publishers, Boston, MA (2002)CrossRefGoogle Scholar
  18. 18.
    Bergamini, M.L., Aguirre, P., Grossmann, I.E.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29, 1914–1933 (2005)CrossRefGoogle Scholar
  19. 19.
    Wicaksono, D.N., Karimi, I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54, 991–1008 (2008)CrossRefGoogle Scholar
  20. 20.
    Kolodziej, S., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Global Optim. 57, 1039–1063 (2013)CrossRefGoogle Scholar
  21. 21.
    Teles, J.P., Castro, P.M., Matos, H.A.: Univariate parameterization for global optimization of mixed-integer polynomial problems. Eur. J. Oper. Res. 229, 613–625 (2013)CrossRefGoogle Scholar
  22. 22.
    Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58, 303–315 (2010)CrossRefGoogle Scholar
  23. 23.
    Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. Ser. A 128, 49–72 (2011)CrossRefGoogle Scholar
  24. 24.
    Sherali, H., Alameddine, A.: A new reformulation–linearization technique for bilinear programming problems. J. Global Optim. 2, 379–410 (1992)CrossRefGoogle Scholar
  25. 25.
    Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Global Optim. 36, 161–189 (2006)CrossRefGoogle Scholar
  26. 26.
    Teles, J.P., Castro, P.M., Matos, H.A.: Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Global Optim. 55, 227–251 (2013)CrossRefGoogle Scholar
  27. 27.
    Rodriguez, M.A., Vecchietti, A.: A comparative assessment of linearization methods for bilinear models. Comput. Chem. Eng. 48, 218–233 (2013)CrossRefGoogle Scholar
  28. 28.
    Tsai, J.-F., Lin, M.-H.: An improved framework for solving NLIPs with signomial terms in the objective or constraints to global optimality. Comput. Chem. Eng. 53, 44–54 (2013)CrossRefGoogle Scholar
  29. 29.
    Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013)CrossRefGoogle Scholar
  30. 30.
    Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algeb. Discret. Math. 6, 466–486 (1985)CrossRefGoogle Scholar
  31. 31.
    Balas, E.: Disjunctive programming. Ann. Discret. Math. 5, 3–51 (1979)CrossRefGoogle Scholar
  32. 32.
    Ruiz, J.P., Grossmann, I.E.: Exploiting vector space properties to strengthen the relaxation of bilinear programs arising in the global optimization of process networks. Optim. Lett. 5, 1–11 (2011)CrossRefGoogle Scholar
  33. 33.
    Catalão, J.P.S., Mariano, S.J.P.S., Mendes, V.M.F., Ferreira, L.A.F.M.: Scheduling of head-sensitive cascaded hydrosystems: a nonlinear approach. IEEE Trans. Power Syst. 24, 337–346 (2009)CrossRefGoogle Scholar
  34. 34.
    Catalão, J.P.S., Mariano, S.J.P.S., Mendes, V.M.F., Ferreira, L.A.F.M.: Nonlinear optimization method for short-term hydro scheduling considering head-dependency. Eur. Trans. Electr. Power 20, 172–183 (2010)Google Scholar
  35. 35.
    Lima, R.M., Marcovecchio, M.G., Novais, A.Q., Grossmann, I.E.: On the computational studies of deterministic global optimization of head dependent short-term hydro scheduling. IEEE Trans. Power Syst. 28(4), 4336–4347 (2013)CrossRefGoogle Scholar
  36. 36.
    Raman, R., Grossmann, I.E.: Relation between MILP modeling and logical inference for chemical process synthesis. Comp. Chem. Eng. 15, 7384 (1991)CrossRefGoogle Scholar
  37. 37.
    Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)CrossRefGoogle Scholar
  38. 38.
    Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratório Nacional de Energia e GeologiaLisbonPortugal
  2. 2.Centro de Investigação OperacionalFaculdade de Ciências, Universidade de Lisboa LisbonPortugal
  3. 3.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations