Journal of Global Optimization

, Volume 60, Issue 1, pp 49–58

A hyperbolic smoothing approach to the Multisource Weber problem

  • Vinicius L. Xavier
  • Felipe M. G. França
  • Adilson E. Xavier
  • Priscila M. V. Lima
Article

Abstract

The Multisource Weber problem, also known as the continuous location-allocation problem, or as the Fermat-Weber problem, is considered here. A particular case of the Multisource Weber problem is the minimum sum-of-distances clustering problem, also known as the continuous \(p\)-median problem. The mathematical modelling of this problem leads to a \(min-sum-min\) formulation which, in addition to its intrinsic bi-level nature, is strongly nondifferentiable. Moreover, it has a large number of local minimizers, so it is a typical global optimization problem. In order to overcome the intrinsic difficulties of the problem, the so called Hyperbolic Smoothing methodology, which follows a smoothing strategy using a special \( \, C^{\infty } \, \) differentiable class function, is adopted. The final solution is obtained by solving a sequence of low dimension \( \, C^{\infty } \, \) differentiable unconstrained optimization sub-problems which gradually approaches the original problem. For the purpose of illustrating both the reliability and the efficiency of the method, a set of computational experiments making use of traditional test problems described in the literature was performed. Apart from consistently presenting better results when compared to related approaches, the novel technique introduced here was able to deal with instances never tackled before in the context of the Multisource Weber problem.

Keywords

Multisource Weber problem Min-sum-distances clustering problem Nondifferentiable programming 

References

  1. 1.
    Bagirov, A.M., Al-Nuaimat, A., Sultanova, N.: Hyperbolic smoothing function method for minimax problems. Optimization (2012). doi:10.1080/0233/934.2012.675335
  2. 2.
    Bagirov, A.M., Ordin, B., Gurkan, O., Xavier, A.E.: An Incremental Clustering Algorithm Based on Smoothing Techniques, submitted to Computational Optimization and Applications (2012)Google Scholar
  3. 3.
    Bongartz, I., Calamai, P.H., Conn, A.R.: A projection method for \( l_p \) norm location-allocation problems. Math. Program. 66, 283–312 (1994)CrossRefGoogle Scholar
  4. 4.
    Brimberg, J., Hansen, P., Mladenovic, N., Taillard, E.D.: Improvements and comparison of heuristics for solving the multisource weber problem. Oper. Res. 48, 129–135 (2000)CrossRefGoogle Scholar
  5. 5.
    Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)CrossRefGoogle Scholar
  6. 6.
    Plastino, A., Fuchshuber, R., Martins, S.L., Freitas, A.A., Salhi, S.: A hybrid data mining metaheuristic for the \(p-\)median problem. Stat. Anal. Data Min. 4, 313–335 (2011)CrossRefGoogle Scholar
  7. 7.
    Reinelt, G.: TSP-LIB: a traveling salesman library. ORSA J. Comput. 3(4), 376–384 (1991)CrossRefGoogle Scholar
  8. 8.
    Rubinov, A.: Methods for global optimization of nonsmooth functions with applications. Appl. Comput. Math. 5(1), 3–15 (2006)Google Scholar
  9. 9.
    Santos, A.B.A.: Problemas de Programação Não- Diferenciável: Uma Metodologia de Suavização, M.Sc. thesis—COPPE—UFRJ, Rio de Janeiro (in Portuguese) (1997)Google Scholar
  10. 10.
    Wesolowsky, G.O.: The Weber Problem: History and Perspectives, Location Science, vol. 1, pp. 5–23 (1993)Google Scholar
  11. 11.
    Xavier, A.E.: Penalização Hiperbólica: Um Novo Método para Resolução de Problemas de Otimização, M.Sc. Thesis, COPPE—Federal University of Rio de Janeiro (in Portuguese) (1982)Google Scholar
  12. 12.
    Xavier, V.L.: Resolução do Problema de Agrupamento segundo o Critério de Minimização da Soma de Distâncias, M.Sc. thesis—COPPE—UFRJ, Rio de Janeiro (in Portuguese) (2012)Google Scholar
  13. 13.
    Xavier, A.E., Oliveira, A.A.F.: Optimal covering of plane domains by circles via hyperbolic smoothing. J. Glob. Optim. 31, 493–504 (2005)CrossRefGoogle Scholar
  14. 14.
    Xavier, A.E.: The hyperbolic smoothing clustering method. Pattern Recognit. 43, 731–737 (2010)CrossRefGoogle Scholar
  15. 15.
    Xavier, A.E., Xavier, V.L.: Solving the minimum sum-of-squares clustering problem by hyperbolic smoothing and partition into boundary and gravitational regions. Pattern Recognit. 44, 70–77 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vinicius L. Xavier
    • 1
  • Felipe M. G. França
    • 1
  • Adilson E. Xavier
    • 1
  • Priscila M. V. Lima
    • 2
  1. 1.PESC-COPPE, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.iNCE, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations