Journal of Global Optimization

, Volume 59, Issue 4, pp 811–836 | Cite as

Benson type algorithms for linear vector optimization and applications

  • Andreas H. Hamel
  • Andreas Löhne
  • Birgit Rudloff
Article

Abstract

New versions and extensions of Benson’s outer approximation algorithm for solving linear vector optimization problems are presented. Primal and dual variants are provided in which only one scalar linear program has to be solved in each iteration rather than two or three as in previous versions. Extensions are given to problems with arbitrary pointed solid polyhedral ordering cones. Numerical examples are provided, one of them involving a new set-valued risk measure for multivariate positions.

Keywords

Vector optimization Multiple objective optimization  Linear programming Duality Algorithms Outer approximation Set-valued risk measure Transaction costs 

Mathematics Subject Classification

90C29 90C05 90-08 91G99 

References

  1. 1.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)CrossRefGoogle Scholar
  2. 2.
    Barber, C., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)CrossRefGoogle Scholar
  3. 3.
    Benson, H.: Further analysis of an outcome set-based algorithm for multiple-objective linear programming. J. Optimiz. Theory Appl. 97(1), 1–10 (1998a)CrossRefGoogle Scholar
  4. 4.
    Benson, H.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optimiz. 13, 1–24 (1998b)CrossRefGoogle Scholar
  5. 5.
    Bremner, D., Fukuda, K., Marzetta, A.: Primal—dual methods for vertex and facet enumeration. Discrete Comput. Geom. 20(3), 333–357 (1998)CrossRefGoogle Scholar
  6. 6.
    Csirmaz, L.: Using multiobjective optimization to map the entropy region of four random variables. http://eprints.renyi.hu/66/ (2013)
  7. 7.
    Ehrgott, M.: Solving multiobjective linear programmes—from primal methods in decision space to dual methods in outcome space. In: Book of Abstracts, Second South Pacific Conference on Mathematics, Noumea, New Caledonia, August 30th to September 3rd, (2010). http://pages.univ-nc.nc/bonnel/spcm-2010/confspcm10.htm
  8. 8.
    Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s outer approximation algorithm. Report 654, University of Auckland School of Engineering (2007)Google Scholar
  9. 9.
    Ehrgott, M., Shao, L., Schöbel, A.: An approximation algorithm for convex multi-objective programming problems. J. Global Optimiz. 50(3), 397–416 (2011)CrossRefGoogle Scholar
  10. 10.
    Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s outer approximation algorithm. J. Global Optimiz. 52(4), 757–778 (2012)CrossRefGoogle Scholar
  11. 11.
    Föllmer, H., Schied, A.: Stochastic Finance, Extended Edition. Walter de Gruyter, Berlin (2011)CrossRefGoogle Scholar
  12. 12.
    Hamel, A.H., Löhne, A.: Lagrange duality in set optimization (submitted) (2012). arXiv:1207.4433.Google Scholar
  13. 13.
    Hamel, A.H.: A duality theory for set-valued functions I: Fenchel conjugation theory. J Set-Valued Var. Anal. 17, 153–182 (2009)CrossRefGoogle Scholar
  14. 14.
    Hamel, A.H.: A Fenchel–Rockafellar duality theorem for set-valued optimization. Optimization 60(7–9), 1023–1043 (2011)CrossRefGoogle Scholar
  15. 15.
    Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1, 66–95 (2010)CrossRefGoogle Scholar
  16. 16.
    Hamel, A.H., Heyde, F., Löhne, A., Tammer, C., Winkler, K.: Closing the duality gap in linear vector optimization. J. Convex Anal. 11(1), 163–178 (2004)Google Scholar
  17. 17.
    Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011)CrossRefGoogle Scholar
  18. 18.
    Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7(2), 229–246 (2013)CrossRefGoogle Scholar
  19. 19.
    Heyde, F.: Geometric duality for convex vector optimization problems. (submitted) (2011). arXiv:1109.3592v1.Google Scholar
  20. 20.
    Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optimiz. 19(2), 836–845 (2008)CrossRefGoogle Scholar
  21. 21.
    Heyde, F., Löhne, A.: Solution concepts in vector optimization: A fresh look at an old story. Optimization 60(12), 1421–1440 (2011)CrossRefGoogle Scholar
  22. 22.
    Heyde, F., Löhne, A., Tammer, C.: The attainment of the solution of the dual program in vertices for vectorial linear programs. In: Barichard, V. et al. (Eds.) Multiobjective programming and goal programming. Theoretical results and practical applications. Lecture Notes in Economics and Mathematical Systems vol. 618. Springer, pp. 13–24 (2009a)Google Scholar
  23. 23.
    Heyde, F., Löhne, A., Tammer, C.: Set-valued duality theory for multiple objective linear programs and application to mathematical finance. Math. Methods Oper. Res. 69(1), 159–179 (2009b)CrossRefGoogle Scholar
  24. 24.
    Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004)Google Scholar
  25. 25.
    Korn, R., Müller, S.: The decoupling approach to binomial pricing of multi-asset options. J. Comput. Finance 12(3), 1–30 (2009)Google Scholar
  26. 26.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Berlin (2011)CrossRefGoogle Scholar
  27. 27.
    Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios and strategies in markets with transaction costs. (submitted) (2011). arXiv:1107.5720v1.Google Scholar
  28. 28.
    Löhne, A., Schrage, C.: An algorithm to solve polyhedral convex set optimization problems. Optimization 62(1), 131–141 (2013)CrossRefGoogle Scholar
  29. 29.
    Luc, D.T.: On duality in multiple objective linear programming. Eur. J. Oper. Res. 210, 158–168 (2011)CrossRefGoogle Scholar
  30. 30.
    Rockafellar, R.T., Uryasev, S.P.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)Google Scholar
  31. 31.
    Ruszczyński, A., Vanderbei, R.J.: Frontiers of stochastically nondominated portfolios. Econometrica 71(4), 1287–1297 (2003)CrossRefGoogle Scholar
  32. 32.
    Shao, L., Ehrgott, M.: Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68(2), 257–276 (2008a)CrossRefGoogle Scholar
  33. 33.
    Shao, L., Ehrgott, M.: Approximating the nondominated set of an MOLP by approximately solving its dual problem. Math. Methods Operat. Res. 68(3), 469–492 (2008b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andreas H. Hamel
    • 1
  • Andreas Löhne
    • 2
  • Birgit Rudloff
    • 3
  1. 1.Yeshiva UniversityNew YorkUSA
  2. 2.Martin-Luther-Universität Halle-WittenbergGermany
  3. 3.Princeton UniversityPrincetonUSA

Personalised recommendations