Journal of Global Optimization

, Volume 58, Issue 3, pp 497–516 | Cite as

A black-box scatter search for optimization problems with integer variables

  • Manuel Laguna
  • Francisco Gortázar
  • Micael Gallego
  • Abraham Duarte
  • Rafael Martí
Article

Abstract

The goal of this work is the development of a black-box solver based on the scatter search methodology. In particular, we seek a solver capable of obtaining high quality outcomes to optimization problems for which solutions are represented as a vector of integer values. We refer to these problems as integer optimization problems. We assume that the decision variables are bounded and that there may be constraints that require that the black-box evaluator is called in order to know whether they are satisfied. Problems of this type are common in operational research areas of applications such as telecommunications, project management, engineering design and the like.Our experimental testing includes 171 instances within four classes of problems taken from the literature. The experiments compare the performance of the proposed method with both the best context-specific procedures designed for each class of problem as well as context-independent commercial software. The experiments show that the proposed solution method competes well against commercial software and that can be competitive with specialized procedures in some problem classes.

Keywords

Black-box optimization Metaheuristics Hard optimization problems 

Notes

Acknowledgments

This research has been partially supported by the Government of Spain (Grant Refs. TIN2009-07516 and TIN2012-35632).

References

  1. 1.
    April, J., Better, M., Glover, F., Kelly, J.P., Laguna, M.: Enhancing Business Process Management with Simulation Optimization. BPTrends, 1–11 (2005)Google Scholar
  2. 2.
    Baños, R., Gil, C., Agulleiro, J.I., Reca, J.: A memetic algorithm for water distribution network design. In: Saad, A., Avineri, E., Dahal, K., Sarfraz, M., Roy, R. (eds.) Soft Computing in Industrial Applications: Recent and Emerging Methods and Techniques, pp. 279–289. Springer, Berlin (2007)CrossRefGoogle Scholar
  3. 3.
    Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. INFORMS J. Comput. 6(2), 154–160 (1994)CrossRefGoogle Scholar
  4. 4.
    Campos, V., Laguna, M., Martí, R.: Context-independent scatter and Tabu search for permutation problems. INFORMS J. Comput. 17(1), 111–122 (2005)CrossRefGoogle Scholar
  5. 5.
    Chen, C.-C.: Placement and Partitioning Methods for Integrated Circuit Layout. University of California, Berkeley (1986)Google Scholar
  6. 6.
    Dolezal, O., Hofmeister, T., Lefmann, H.: A Comparison of Approximation Algorithms for the MaxCut-Problem. Universität Dortmund, (1999)Google Scholar
  7. 7.
    Duarte, A., Glover, F., Martí, R., Gortázar, F.: Hybrid scatter Tabu search for unconstrained global optimization. Ann. Oper. Res. 183, 95–123 (2011)CrossRefGoogle Scholar
  8. 8.
    Duarte, A., Martí, R., Gortázar, F.: Path relinking for large scale global optimization. Soft Comput. 15, 2257–2273 (2011)CrossRefGoogle Scholar
  9. 9.
    Feo, T.A., Khellaf, M.: A class of bounded approximation algorithms for graph partitioning. Networks 20, 181–195 (1990)CrossRefGoogle Scholar
  10. 10.
    Fujiwara, O., Khang, D.B.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour. Res. 26(4), 539–549 (1987)CrossRefGoogle Scholar
  11. 11.
    Gallego, M., Laguna, M., Martí, R., Duarte, A.: Tabu search with Strategic Oscillation for the maximally diverse grouping problem. J. Oper. Res. Soc. doi:10.1057/jors.2012.66 (2011)
  12. 12.
    Glover, F.: Tabu search and adaptive memory programing—advances, applications and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science and Operations Research: Advances in Metaheuristics, Optimization and Stochastic Modeling Technologies, pp. 1–75. Kluwer, Boston (1997)CrossRefGoogle Scholar
  13. 13.
    Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)CrossRefGoogle Scholar
  14. 14.
    Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–526 (2011)CrossRefGoogle Scholar
  15. 15.
    Gortázar, F., Duarte, A., Laguna, M., Martí, R.: Black-box scatter search for general classes of binary optimization problems. Comput. Oper. Res. 37(11), 1977–1986 (2010)CrossRefGoogle Scholar
  16. 16.
    Hansen, P., Mladenovic, N.: An introduction to variable neighborhood search. In: Voss, S., Martello, S., Ossman, I., Roucairol, C. (eds.) Meta-heuristics, Advances and Trends in Local Search Paradigms for Iotimization, pp. 433–458. Kluwer, Boston (1999)CrossRefGoogle Scholar
  17. 17.
    Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11, 311–334 (1982)CrossRefGoogle Scholar
  18. 18.
    Kral, J.: To the problem of segmentation of a program. Inf. Process. Mach. 2, 116–127 (1965)Google Scholar
  19. 19.
    Laguna, M., Martí, R.: Scatter Search: Methodology and Implementations in C. Kluwer, Boston (2003)CrossRefGoogle Scholar
  20. 20.
    Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Glob. Optim. 33, 235–255 (2005)CrossRefGoogle Scholar
  21. 21.
    Laguna, M., Duarte, A., Martí, R.: Hybridizing the cross entropy method: an application to the max-cut problem. Comput. Oper. Res. 36(2), 487–498 (2009)CrossRefGoogle Scholar
  22. 22.
    Laguna, M., Molina, J., Pérez, F., Caballero, R., Hernández-Díaz, A.: The challenge of optimizing expensive black boxes: a scatter search / rough set theory approach. J. Oper. Res. Soc. 61(1), 53–67 (2010)CrossRefGoogle Scholar
  23. 23.
    Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer, Boston (2002)CrossRefGoogle Scholar
  24. 24.
    Lippai, I., Heaney, J.P., Laguna, M.: Robust water system design with commercial intelligent search optimizers. J. Comput. Civ. Eng. 13(3), 135–143 (1999)CrossRefGoogle Scholar
  25. 25.
    Lusa, A., Potts, C.N.: A variable neighbourhood search algorithm for the constrained task allocation problem. J. Oper. Res. Soc. 59(6), 812–822 (2008)CrossRefGoogle Scholar
  26. 26.
    Martí, R., Gortázar, F., Duarte, A.: Heuristics for the bandwidth colouring problem. Int. J. MetaHeuristics. 1(1), 11–29 (2010)Google Scholar
  27. 27.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)Google Scholar
  28. 28.
    Prestwich, S.: Constrained bandwidth multicoloration neighborhoods. Computational symposium on graph coloring and its generalizations, (pp. 126–133). Ithaca, NY (2002)Google Scholar
  29. 29.
    Rossman, L.A.: EPANET: User’s Manual. United States Environmental Protection Agency, Cincinnati (2000)Google Scholar
  30. 30.
    Schittekat, P., Sörensen, K.: Supporting 3PL decisions in the automotive industry by generating diverse solutions to a large-scale location-routing problem. Oper. Res. 57(5), 1058–1067 (2009)CrossRefGoogle Scholar
  31. 31.
    Shaake, J.C., Lai, D.: Linear Programming and Dynamic Programming Application to Water Distribution Network Design. Massachusetts Institute of Technology, Cambridge (1969)Google Scholar
  32. 32.
    Spears, W.M., DeJong, K.A.: On the virtues of parameterized uniform crossover. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236. Morgan Kaufmann Publishers Inc, San Francisco (1991)Google Scholar
  33. 33.
    Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987)CrossRefGoogle Scholar
  34. 34.
    Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-Y.: Adaptive memory programming: a unified view of metaheuristics. Eur. J. Oper. Res. 135, 1–16 (2001)CrossRefGoogle Scholar
  35. 35.
    Vasan, A., Simonovic, S.P.: Optimization of water distribution network design using differential evolution. J. Water Resour. Plan. Manag. 136(2), 279–287 (2010)CrossRefGoogle Scholar
  36. 36.
    Weitz, R.R., Jelassi, M.T.: Assigning students to groups: a multi-criteria decision support system approach. Decis. Sci. 23(3), 746–757 (1992)CrossRefGoogle Scholar
  37. 37.
    Yates, D.F., Templeman, A.B., Boffey, T.B.: The computational complexity of the problem of determining least capital cost designs for water supply networks. Eng. Optim. 7(2), 143–155 (1984)CrossRefGoogle Scholar
  38. 38.
    Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 10(1), 45–56 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Manuel Laguna
    • 1
  • Francisco Gortázar
    • 2
  • Micael Gallego
    • 2
  • Abraham Duarte
    • 2
  • Rafael Martí
    • 3
    • 4
  1. 1.Leeds School of BusinessUniversity of Colorado at BoulderBoulderUSA
  2. 2.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain
  3. 3.Departamento de Estadística e Investigación OperativaUniversitat de ValènciaValenciaSpain
  4. 4.Visiting the Leeds School of BusinessUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations