Advertisement

Journal of Global Optimization

, Volume 58, Issue 2, pp 207–242 | Cite as

Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming

  • E. G. Birgin
  • J. M. Martínez
  • L. F. Prudente
Article

Abstract

In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the \(\alpha \) BB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results that guarantee optimality and/or feasibility up to any required precision will be provided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.

Keywords

Deterministic global optimization Augmented Lagrangians  Nonlinear programming Algorithms Numerical experiments 

References

  1. 1.
    Adjiman, C.S., Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A global optimization method $\alpha $BB for process design. Comput. Chem. Eng. 20, S419–424 (1996)CrossRefGoogle Scholar
  2. 2.
    Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, $\alpha $BB, for general twice-differentiable constrained NLPs—I. Theor. Adv. Comput. Chem. Eng. 22, 1137–1158 (1998)CrossRefGoogle Scholar
  3. 3.
    Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, $\alpha $BB, for general twice-differentiable constrained NLPs—II. Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)CrossRefGoogle Scholar
  4. 4.
    Al-Khayyal, F.A., Sherali, H.D.: On finitely terminating Branch-and-Bound algorithms for some global optimization problems. SIAM J. Optim. 10, 1049–1057 (2000)CrossRefGoogle Scholar
  5. 5.
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)CrossRefGoogle Scholar
  6. 6.
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008)CrossRefGoogle Scholar
  7. 7.
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45, 209–236 (2010)CrossRefGoogle Scholar
  8. 8.
    Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60, 627–641 (2011)CrossRefGoogle Scholar
  9. 9.
    Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. (to appear)Google Scholar
  10. 10.
    Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. (to appear)Google Scholar
  11. 11.
    Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between the constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)CrossRefGoogle Scholar
  12. 12.
    Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20, 3533–3554 (2010)CrossRefGoogle Scholar
  13. 13.
    Andretta, M., Birgin, E.G., Martínez, J.M.: Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numer. Algorithms 53, 23–52 (2010)CrossRefGoogle Scholar
  14. 14.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: $\alpha $BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)CrossRefGoogle Scholar
  15. 15.
    Audet, C., Dennis Jr, J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20, 445–472 (2009)CrossRefGoogle Scholar
  16. 16.
    Bard, J.F.: Practical Bilevel Optimization. Algorithms and Applications. Kluwer Book Series: Nonconvex Optimization and its Applications. Kluwer, Dordrecht, The Netherlands (1998)CrossRefGoogle Scholar
  17. 17.
    Birgin, E.G., Bustamante, L.H., Callisaya, H.F., Martínez, J.M.: Packing circles within ellipses. Int. Trans. Oper. Res. doi: 10.1111/itor.12006
  18. 18.
    Birgin, E.G., Castelani, E.V., Martinez, A.L., Martínez, J.M.: Outer trust-region method for constrained optimization. J. Optim. Theory Appl. 150, 142–155 (2011)CrossRefGoogle Scholar
  19. 19.
    Birgin, E.G., Castillo, R., Martínez, J.M.: Numerical comparison of augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31, 31–56 (2005)CrossRefGoogle Scholar
  20. 20.
    Birgin, E.G., Fernández, D., Martínez, J.M.: On the boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems. Optim. Methods Softw. doi: 10.1080/10556788.2011.556634
  21. 21.
    Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125, 139–162 (2010)CrossRefGoogle Scholar
  22. 22.
    Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global Minimization Using an Augmented Lagrangian Method with Variable Lower-level Constraints. Technical Report MCDO220107. Department of Applied Mathematics, Unicamp, Brazil (2007) (see http://www.ime.usp.br/~egbirgin/)
  23. 23.
    Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)CrossRefGoogle Scholar
  24. 24.
    Birgin, E.G., Martínez, J.M.: Improving ultimate convergence of an augmented Lagrangian method. Optim. Methods Softw. 23, 177–195 (2008)CrossRefGoogle Scholar
  25. 25.
    Birgin, E.G., Martínez, J.M.: Practical augmented Lagrangian methods. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 3013–3023. Springer, Berlin (2009)Google Scholar
  26. 26.
    Birgin, E.G., Martínez, J.M.: Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Comput. Optim. Appl. 51, 941–965 (2012)CrossRefGoogle Scholar
  27. 27.
    Birgin, E.G., Martínez, J.M., Prudente, L.: Global Nonlinear Programming with Possible Infeasibility and Finite Termination. Technical Report MCDO250612. Department of Applied Mathematics, Unicamp, Brazil (2012) (see http://www.ime.usp.br/~egbirgin/)
  28. 28.
    Callisaya, H.F.: Empacotamento em quadráticas. PhD Thesis, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas (2012)Google Scholar
  29. 29.
    Castelani, E.V., Martinez, A.L., Martínez, J.M., Svaiter, B.F.: Addressing the greediness phenomenon in nonlinear programming by means of proximal augmented Lagrangians. Comput. Optim. Appl. 46, 229–245 (2010)CrossRefGoogle Scholar
  30. 30.
    Conn, A.R., Gould, N.I.M., Toint, PhL: Trust Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  31. 31.
    Diniz-Ehrhardt, M.A., Martínez, J.M., Pedroso, L.G.: Derivative-free methods for nonlinear programming with general lower-level constraints. Comput. Appl. Math. 30, 19–52 (2011)Google Scholar
  32. 32.
    Dostál, Z.: Optimal Quadratic Programming Algorithms. Springer, New York (2009)Google Scholar
  33. 33.
    Dostál, Z., Friedlander, A., Santos, S.A.: Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J. Optim. 13, 1120–1140 (2003)CrossRefGoogle Scholar
  34. 34.
    Eckstein, J.: A practical general approximation criterion for methods of multipliers based on Bregman distances. Math. Program. 96, 61–86 (2003)CrossRefGoogle Scholar
  35. 35.
    Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Application. Kluwer, DorDrecht, Boston, London (1999)Google Scholar
  36. 36.
    Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)CrossRefGoogle Scholar
  37. 37.
    Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009)CrossRefGoogle Scholar
  38. 38.
    Floudas, C.A., Visweeswaran, V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory Comput. Chem. Eng. 14, 1397–1417 (1990)CrossRefGoogle Scholar
  39. 39.
    Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods, and Applications. Kluwer, Dordrecht, The Netherlands (1999)Google Scholar
  40. 40.
    Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Glob. Optim. 17, 127–160 (2000)CrossRefGoogle Scholar
  41. 41.
    Gao, D.Y.: Perfect duality theory and complete solutions to a class of global optimization problems, generalized triality theory in nonsmooth global optimization. Optimization 52, 467–493 (2003)CrossRefGoogle Scholar
  42. 42.
    Gao, D.Y.: Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Glob. Optim. 29, 337–399 (2004)Google Scholar
  43. 43.
    Gao, D.Y.: Complete solutions and extremality criteria to polynomial optimization problems. J. Glob. Optim. 35, 131–143 (2006)CrossRefGoogle Scholar
  44. 44.
    Gao, D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J. Ind. Manag. Optim. 3, 1–12 (2007)CrossRefGoogle Scholar
  45. 45.
    Hager, W.W.: Analysis and implementation of a dual algorithm for constrained optimization. J. Optim. Theory Appl. 79, 427–462 (1993)CrossRefGoogle Scholar
  46. 46.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)CrossRefGoogle Scholar
  47. 47.
    Horst, R., Pardalos, P.M., Thoai, M.V.: Introduction to Global Optimization. Kluwer Book Series: Nonconvex Optimization and its Applications. Kluwer, Dordrecht, The Netherlands (2000)Google Scholar
  48. 48.
    Kearfott, R.B., Dawande, M., Du, K., Hu, C.: Algorithm 737: INTLIB: a portable Fortran 77 interval standard-function library. ACM Trans. Math. Softw. 20, 447–459 (1994)CrossRefGoogle Scholar
  49. 49.
    Lewis, R.M., Torczon, V.: A Direct Search Approach to Nonlinear Programming Problems Using an Augmented Lagrangian Method with Explicit Treatment of Linear Constraints. Technical Report WM-CS-2010-01. College of William & Mary, Department of Computer Sciences (2010)Google Scholar
  50. 50.
    Liberti, L.: Reduction constraints for the global optimization of NLPs. Int. Trans. Oper. Res. 11, 33–41 (2004)CrossRefGoogle Scholar
  51. 51.
    Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 211–262. Springer, Berlin (2006)CrossRefGoogle Scholar
  52. 52.
    Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36, 161–189 (2006)CrossRefGoogle Scholar
  53. 53.
    Luo, H.Z., Sun, X.L., Li, D.: On the convergence of augmented Lagrangian methods for constrained global optimization. SIAM J. Optim. 18, 1209–1230 (2007)CrossRefGoogle Scholar
  54. 54.
    Martínez, J.M., Prudente, L.F.: Handling infeasibility in a large-scale nonlinear optimization algorithm. Numer. Algorithms 60, 263–277 (2012)CrossRefGoogle Scholar
  55. 55.
    Murtagh, B.A., Saunders, M.A.: MINOS 5.4 User’s Guide. System Optimization Laboratory, Department of Operations Research, Standford University, CA (1993)Google Scholar
  56. 56.
    Neumaier, A.: Complete search in continuous global optimization and constraints satisfaction. Acta Numer. 13, 271–369 (2004)Google Scholar
  57. 57.
    Neumaier, A., Shcherbina, O., Huyer, W., Vinkó, T.: A comparison of complete global optimization solvers. Math. Program. 103, 335–356 (2005)CrossRefGoogle Scholar
  58. 58.
    Pacelli, G., Recchioni, M.C.: An interior point algorithm for global optimal solutions and KKT points. Optim. Methods Softw 15, 225–256 (2001)CrossRefGoogle Scholar
  59. 59.
    Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York, NY (1969)Google Scholar
  60. 60.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, New York (1992)Google Scholar
  61. 61.
    Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974)CrossRefGoogle Scholar
  62. 62.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)CrossRefGoogle Scholar
  63. 63.
    Sahinidis, N.V., Tawarmalani, M.: BARON 9.0.4: Global Optimization of Mixed-Integer Nonlinear Programs, User’s manual (2010)Google Scholar
  64. 64.
    Sherali, H.D., Adams, W.P.: A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Book Series: Nonconvex Optimization and its Applications. Kluwer, Dordrecht, The Netherlands (1999)CrossRefGoogle Scholar
  65. 65.
    Sherali, H.D., Alameddine, A., Glickman, T.S.: Biconvex models and algorithms for risk management problems. Am. J. Math. Manag. Sci. 14, 197–228 (1995)Google Scholar
  66. 66.
    Sherali, H.D., Desai, J.: A global optimization RLT-based approach for solving the hard clustering problem. J. Glob. Optim. 32, 281–306 (2005)CrossRefGoogle Scholar
  67. 67.
    Sherali, H.D., Desai, J.: A global optimization RLT-based approach for solving the fuzzy clustering problem. J. Glob. Optim. 33, 597–615 (2005)CrossRefGoogle Scholar
  68. 68.
    Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Glob. Optim. 2, 101–112 (1992)CrossRefGoogle Scholar
  69. 69.
    Sherali, H.D., Tuncbilek, C.H.: New reformulation-linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21, 1–10 (1997)CrossRefGoogle Scholar
  70. 70.
    Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89, 459–478 (2001)CrossRefGoogle Scholar
  71. 71.
    Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)CrossRefGoogle Scholar
  72. 72.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer Book Series: Nonconvex Optimization and its Applications. Kluwer, Dordrecht, The Netherlands (2002)CrossRefGoogle Scholar
  73. 73.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)CrossRefGoogle Scholar
  74. 74.
    Tuy, H.: Convex Analysis and Global Optimization. Kluwer Book Series: Nonconvex Optimization and its Applications. Kluwer, Dordrecht, The Netherlands (1998)CrossRefGoogle Scholar
  75. 75.
    Visweeswaran, V., Floudas, C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems. Comput. Chem. Eng. 14, 1419–1434 (1990)CrossRefGoogle Scholar
  76. 76.
    Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer Book Series: Nonconvex Optimization and its Applications. Kluwer, Dordrecht, The Netherlands (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. G. Birgin
    • 1
  • J. M. Martínez
    • 2
  • L. F. Prudente
    • 2
  1. 1.Department of Computer Science, Institute of Mathematics and StatisticsUniversity of São PauloSão PauloBrazil
  2. 2.Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations