Journal of Global Optimization

, Volume 55, Issue 1, pp 189–208

Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints

Article

Abstract

In this paper, well-posedness of generalized quasi-variational inclusion problems and of optimization problems with generalized quasi-variational inclusion problems as constraints is introduced and studied. Some metric characterizations of well-posedness for generalized quasi-variational inclusion problems and for optimization problems with generalized quasi-variational inclusion problems as constraints are given. The equivalence between the well-posedness of generalized quasi-variational inclusion problems and the existence of solutions of generalized quasi-variational inclusion problems is given under suitable conditions.

Keywords

Well-posedness Metric characterization Generalized quasi-variational inclusion problem Optimization problem with constraint Approximating solution sequence 

Mathematics Subject Classification (2000)

49J27 49J40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)Google Scholar
  2. 2.
    Bednarczuck E., Penot J.P.: Metrically well-set minimization problems. Appl. Math. Optim. 26, 273–285 (1992)CrossRefGoogle Scholar
  3. 3.
    Bianchi M., Kassay G., Pini R.: Well-posed equilibrium problems. Nonlinear Anal. 72, 460–468 (2010)CrossRefGoogle Scholar
  4. 4.
    Cavazzuti E., Morgan J.: Well-posed saddle point problems. In: Hirriart-Urruty, J.B., Oettli, W., Stoer, J. (eds.) Optimization, Theory and Algorithms, pp. 61–76. Marcel Dekker, New York (1983)Google Scholar
  5. 5.
    Ceng L.C., Yao J.C.: Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems. Nonlinear Anal. 69, 4585–4603 (2008)CrossRefGoogle Scholar
  6. 6.
    Crespi G.P., Guerraggio A., Rocca M.: Well posedness in vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 132, 213–226 (2007)CrossRefGoogle Scholar
  7. 7.
    Dontchev, A.L., Zolezzi, T.: Well-posed optimization problems. In: Lecture Notes in Mathematics, vol. 1543, Springer, Berlin (1993)Google Scholar
  8. 8.
    Durea M.: Scalarization for pointwise well-posed vectorial problems. Math. Methods Oper. Res. 66, 409–418 (2007)CrossRefGoogle Scholar
  9. 9.
    Fang Y.P., Hu R., Huang N.J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008)CrossRefGoogle Scholar
  10. 10.
    Fang Y.P., Huang N.J.: Well-posedness for vector variational inequality and constrained vector optimization. Taiwan. J. Math. 11, 1287–1300 (2007)Google Scholar
  11. 11.
    Fang Y.P., Huang N.J., Yao J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133 (2008)CrossRefGoogle Scholar
  12. 12.
    Fang Y.P., Huang N.J., Yao J.C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 201, 682–692 (2010)CrossRefGoogle Scholar
  13. 13.
    Gilbert R.P., Panagiotopoulos P.D., Pardalos P.M.: From Convexity to Nonconvexity. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  14. 14.
    Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems and Variational Models. Kluwer, Dordrecht (2001)Google Scholar
  15. 15.
    Giannessi F., Pardalos P.M., Rapcsak T.: New Trends in Equilibrium Systems. Kluwer, Dordrecht (2001)Google Scholar
  16. 16.
    Hai N.X., Khanh P.Q.: The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328, 1268–1277 (2007)CrossRefGoogle Scholar
  17. 17.
    Huang N.J., Long X.J., Zhao C.W.: Well-posedness for vector quasi-equilibrium problems with applications. J. Ind. Manag. Optim. 5, 341–349 (2009)CrossRefGoogle Scholar
  18. 18.
    Huang X.X., Yang X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)CrossRefGoogle Scholar
  19. 19.
    Huang X.X., Yang X.Q., Zhu D.L.: Letivin-Polyak well-posedness of variational inequalitiy problems with functional constraints. J. Glob. Optim. 44, 159–174 (2009)CrossRefGoogle Scholar
  20. 20.
    Kuratowski K.: Topology, vols. 1, 2. Academic Press, New York, NY (1968)Google Scholar
  21. 21.
    Lemaire B.: Well-posedness, conditioning, and regularization of minimization, inclusion, and fixed point problems. Pliska Studia Mathematica Bulgaria 12, 71–84 (1998)Google Scholar
  22. 22.
    Lemaire B., Ould Ahmed Salem C., Revalski J.P.: Well-posedness by perturbations of variational problems. J. Optim. Theory Appl. 115, 345–368 (2002)CrossRefGoogle Scholar
  23. 23.
    Levitin E.S., Polyak B.T.: Convergence of minimizing sequences in conditional extremum problem. Sov. Math. Doklady. 7, 764–767 (1966)Google Scholar
  24. 24.
    Lignola M.B., Morgan J.: Approximating solutions and α-well-posedness for variational inequalities and Nash equilibria. In: Zaccour, G. (ed.) Decision and Control in Management Science, pp. 367–378. Kluwer, Dordrecht (2002)Google Scholar
  25. 25.
    Lignola M.B.: Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 128, 119–138 (2006)CrossRefGoogle Scholar
  26. 26.
    Lin L.J.: Systems of generalized quasi-variational inclusions problems with applications to variational analysis and optimization problems. J. Glob. Optim. 38, 21–39 (2007)CrossRefGoogle Scholar
  27. 27.
    Lin L.J.: Variational inclusions problems with applications to Ekeland’s variational principle, fixed point and optimization problems. J. Glob. Optim. 39, 509–527 (2007)CrossRefGoogle Scholar
  28. 28.
    Lin L.J.: Systems of variational inclusion problems and differential inclusion problems with applications. J. Glob. Optim. 44, 579–591 (2009)CrossRefGoogle Scholar
  29. 29.
    Lin L.J., Chuang C.S.: Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint. Nonlinear Anal. 70, 3609–3617 (2009)CrossRefGoogle Scholar
  30. 30.
    Long X.J., Huang N.J.: Metric characterizations of α-well-posedness for symmetric quasi-equilibrium problems. J. Glob. Optim. 45, 459–471 (2009)CrossRefGoogle Scholar
  31. 31.
    Lucchetti R., Patrone F.: A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities. Numer. Funct. Anal. Optim. 3, 461–476 (1981)CrossRefGoogle Scholar
  32. 32.
    Lucchetti, R., Revalski, J. (eds.): Recent Developments in Well-Posed Variational Problems. Kluwer, Dordrecht (1995)Google Scholar
  33. 33.
    Margiocco M., Patrone F., Pusillo L.: A new approach to Tykhonov well-posedness for Nash equilibria. Optimization 40, 385–400 (1997)CrossRefGoogle Scholar
  34. 34.
    Margiocco M., Patrone F., Pusillo L.: On the Tykhonov well-posedness of concave games and Cournot oligopoly games. J. Optim. Theory Appl. 112, 361–379 (2002)CrossRefGoogle Scholar
  35. 35.
    Miglierina E., Molho E., Rocca M.: Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126, 391–409 (2005)CrossRefGoogle Scholar
  36. 36.
    Morgan J.: Approximations and well-posedness in multicriteria games. Ann. Oper. Res. 137, 257–268 (2005)CrossRefGoogle Scholar
  37. 37.
    Petruşel A., Rus I.A., Yao J.C.: Well-posedness in the generalized sense of the fixed point problems for multivalued operators. Taiwan. J. Math. 11, 903–914 (2007)Google Scholar
  38. 38.
    Revalski J.P.: Hadamard and strong well-posedness for convex programs. SIAM J. Optim. 7, 519–526 (1997)CrossRefGoogle Scholar
  39. 39.
    Sach P.H., Tuan L.A.: Generalizations of vector quasivariational inclusion problems with set-valued maps. J. Glob. Optim. 43, 23–45 (2009)CrossRefGoogle Scholar
  40. 40.
    Tykhonov A.N.: On the stability of the functional optimization problems. USSR J. Comput. Math. Math. Phys. 6(4), 28–33 (1966)CrossRefGoogle Scholar
  41. 41.
    Zolezzi T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. 25, 437–453 (1995)CrossRefGoogle Scholar
  42. 42.
    Zolezzi T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of MathematicsNanchang UniversityNanchangPeople’s Republic of China
  2. 2.Department of MathematicsSichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of MathematicsNational University of IrelandGalwayIreland

Personalised recommendations