Journal of Global Optimization

, Volume 56, Issue 4, pp 1653–1666 | Cite as

Constant-approximation for optimal data aggregation with physical interference

  • Hongwei Du
  • Zhao Zhang
  • Weili Wu
  • Lidong Wu
  • Kai Xing
Article

Abstract

In this paper, we study the aggregation problem with power control under the physical interference. The maximum power is bounded. The goal is to assign power to nodes and schedule transmissions toward the sink without physical interferences such that the total number of time slots is minimized. Under the assumption that the unit disk graph Gδr with transmission range δr is connected for some constant 0 < δ ≤ 1/31/α, where r is the maximum transmission range determined by the maximum power, an approximation algorithm is presented with at most b3(log2n + 6) + (R−1)(μ1 + μ2) time slots, where n is the number of nodes, R is the radius of graph Gδr with respect to the sink, and b, μ1, μ2 are constants. Since both R and log2n are lower bounds for the optimal latency of aggregation in the unit disk graph Gδr, our algorithm has a constant-approximation ratio for the aggregation problem in Gδr.

Keywords

Aggregation Physical interference Power control Bounded power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: complexity and game theory. In: Proceedings of the 28th Conference of IEEE Computer and Communications Societies (INFOCOM) (2009)Google Scholar
  2. 2.
    Chafekar D., Kumar V.S.A., Marathe M., Pathasarathy S., Srinivasan A.: Cross-layer latency minimization in wireless networks with SINR constraints. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC) (2007)Google Scholar
  3. 3.
    Chafekar D., Kumar V., Marathe M., Parthasarathy S., Srinivasan A.: Approximation algorithms for computing capacity of wireless networks with SINR constraints. In: Proceedings of the 27th Conference of the IEEE Communications Society (INFOCOM), pp. 1166–1174 (2008)Google Scholar
  4. 4.
    Chen, X.J., Hu, X.D., Zhu, J.M.: Minimum aggregation time problem in wireless sensor networks. MSN 2005, LNCS 3749, pp. 133–142 (2005)Google Scholar
  5. 5.
    Dinitz, M.: Distributed algorithms for approximating wireless network capacity, In: Proceedings of the 29th Conference of IEEE Computer and Communications Societies (INFOCOM) (2010)Google Scholar
  6. 6.
    Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference scheduling. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 220–229 (2009)Google Scholar
  7. 7.
    Fanghänel, A., Kesselheim, T., Vöcking, B.: Improved algorithms for latency minimization in wireless networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, LNCS, vol. 5556, pp. 447–458 (2009)Google Scholar
  8. 8.
    Goussevskaia, O., Oswald, Y.-A., Wattenhofer, R.: Complexity in geometric SINR. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc) pp. 100–109 (2007)Google Scholar
  9. 9.
    Goussevskaia O., Pignolet Y.-A., Wattenhofer R.: Efficiency of wireless networks: approximation algorithms for the physical interference model. Found. Trends Netw. 4(3), 313–420 (2009)Google Scholar
  10. 10.
    Goussevskaia, O., Halldóorsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of arbitrary wireless networks. In: Proceedings of the 28th IEEE INFOCOM (2009)Google Scholar
  11. 11.
    Goussevskaia, O.: Computational complexity and scheduling algorithms for wireless networks. PhD thesis, ETH Zurich (2009)Google Scholar
  12. 12.
    Groemer H.: Über die Einlagerung von Kreisen in einen konvexen Bereich. Math. Z. 73, 285–294 (1960)CrossRefGoogle Scholar
  13. 13.
    Gronkvist, J., Hansson, A.: Comparison between graph-based and interference-based STDMA scheduling. In: Mobihoc (2001)Google Scholar
  14. 14.
    Gupta P., Kumar P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46, 388–404 (2000)CrossRefGoogle Scholar
  15. 15.
    Halldórsson M.M.: Wireless scheduling with power control. In: ESA 2009, LNCS, vol. 5757 pp. 361–372 (2009)Google Scholar
  16. 16.
    Halldórsson M.M., Wattenhofer R.: Wireless communication is in APX. In: ICALP (2009)Google Scholar
  17. 17.
    HalldórssonM, M.M., Mitra, P.: Wireless capacity with oblivious power in general metrics. Proceedings of SIAM SODA (2011)Google Scholar
  18. 18.
    Huang, S.C.-H., Wan, P.-J., Vu, C.T., Li, Y., Yao, F.: Nearly constant approximation for data aggregation scheduling in wireless sensor networks. IEEE INFOCOM (2007)Google Scholar
  19. 19.
    Huang S.C.-H., Wan P.-J., Deng J., Han Y.S.: Broadcast scheduling in interference environment. IEEE Trans. Mobile Comput. 7, 1338–1348 (2008)CrossRefGoogle Scholar
  20. 20.
    Kesselheim, T.: A constant-factor approximation for wireless capacity maximization with power control in the SINR model. In: Proceedings of SIAM SODA (2011)Google Scholar
  21. 21.
    Kowalski, D.R., Rokicki, M.A.: Connectivity problem in wireless networks. DISC 2010, LNCS 6343, pp. 344-358 (2010)Google Scholar
  22. 22.
    Li, D.Y., Zhu, Q.H., Du, H.W., Wu, W.L., Chen, H., Chen, W.P.: Conflict-free many-to-one data aggregation scheduling in multi-channel multi-hop wireless sensor networks. IEEE ICC’11, pp.1–5 (2011)Google Scholar
  23. 23.
    Li, H.X., Wu, C., Hua, Q.-S., Lau, F.C.M.: Latency-minimizing data aggregation in wireless sensor networks under physical interference model. Ad Hoc Netw. (2011) doi:10.1016/j.adhoc.2011.12.004
  24. 24.
    Li, X.-Y., Jia, X.H., Wang, S.G., Tang, S.J., Dai, G.J., Zhao, J.Z., Qi, Y.: Efficient data aggregation in multi-hop wireless sensor networks under physical interference model. IEEE MASS’09, pp. 353–362 (2009)Google Scholar
  25. 25.
    Lotker Z., Peleg D.: Structure and algorithms in the SINR wireless model. ACM SIGACT News 41(2), 74–84 (2010)CrossRefGoogle Scholar
  26. 26.
    Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling and scheduling in low-power wireless networks. In: SenSys (2008)Google Scholar
  27. 27.
    Moscibroda T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: Proceedings of the 25th Conference of IEEE Computer and Communications Societies (INFOCOM) (2006)Google Scholar
  28. 28.
    Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: the scheduling complexity of arbitrary topologies. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 310–321 (2006)Google Scholar
  29. 29.
    Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond graph-based models. In: Proceedings of the 5th Workshop on Hot Topics in Networks (Hotnets) (2006)Google Scholar
  30. 30.
    Moscibroda, T.: The worst-case capacity of wireless sensor networks, In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–10 (2007)Google Scholar
  31. 31.
    Oler N.: An inequality in the geometry of numbers. Acta Math. 105, 19–48 (1961)CrossRefGoogle Scholar
  32. 32.
    Wan, P.-J., Huang, S.C.-H., Wang, L.X., Wan, Z.Y., Jia, X.H.: Minimum-latency aggregation scheduling in multihop wireless networks. MobiHoc’09, pp. 185–193 (2009)Google Scholar
  33. 33.
    Wan, P.-J., Jia, X., Yao, F.: Maximum independent set of links under physical interference model. WASA (2009)Google Scholar
  34. 34.
    Wan, P.-J., Xu, X.-H., Frieder, O.: Shortest link scheduling with power control under physical interference model. In: Proceedings of the 6th International Conference on Mobile Ad-Hoc and Sensor Networks (2010)Google Scholar
  35. 35.
    Wan, P.-J., Ma, C., Tang, S., Xu B.: Maximizing capacity with power control under physical interference model in simplex mode. WASA (2011)Google Scholar
  36. 36.
    Zassenhaus H.: Modern development in the geometry of numbers. Bull. Am. Math. Soc. 67, 427–439 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Hongwei Du
    • 1
  • Zhao Zhang
    • 2
  • Weili Wu
    • 3
  • Lidong Wu
    • 3
  • Kai Xing
    • 3
  1. 1.Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenPeople’s Republic of China
  2. 2.Xingjiang UniversityUrumqiPeople’s Republic of China
  3. 3.University of Texas at DallasRichardsonUSA

Personalised recommendations