Journal of Global Optimization

, Volume 56, Issue 3, pp 897–916 | Cite as

Strong formulations for the pooling problem



The pooling problem is a well-studied global optimization problem with applications in oil refining and petrochemical industry. Despite the strong NP-hardness of the problem, which is proved formally in this paper, most instances from the literature have recently been solved efficiently by use of strong formulations. The main contribution from this paper is a new formulation that proves to be stronger than other formulations based on proportion variables. Moreover, we propose a promising branching strategy for the new formulation and provide computational experiments confirming the strength of the new formulation and the effectiveness of the branching strategy.


Pooling problem Bilinear programming Global optimization Linear relaxation Computational complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhya N., Tawarmalani M., Sahinidis N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)CrossRefGoogle Scholar
  2. Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)CrossRefGoogle Scholar
  3. Almutairi H., Elhedhli S.: A new Lagrangian approach to the pooling problem. J. Glob. Optim. 45(2), 237–257 (2009)CrossRefGoogle Scholar
  4. Audet C., Brimberg J., Hansen P., Le Digabel S., Mladenović N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)CrossRefGoogle Scholar
  5. Audet C., Hansen P., Jaumard B., Savard G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)Google Scholar
  6. Baker T.E., Lasdon L.S.: Successive linear programming at Exxon. Manag. Sci. 31(3), 264–274 (1985)CrossRefGoogle Scholar
  7. Ben-Tal A., Eiger G., Gershovitz V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)CrossRefGoogle Scholar
  8. Floudas C.A., Aggarwal A.: A decomposition strategy for global optimum search in the pooling problem. Oper. Res. J. Comput. 2(3), 225–235 (1990)Google Scholar
  9. Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs–I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)CrossRefGoogle Scholar
  10. Foulds L.R., Haugland D., Jörnsten K.: A bilinear approach to the pooling problem. Optimization 24(1), 165–180 (1992)CrossRefGoogle Scholar
  11. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)Google Scholar
  12. Gounaris C.E., Misener R., Floudas C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)CrossRefGoogle Scholar
  13. Griffith R.E., Stewart R.A.: A nonlinear programming technique for the optimization of continuous processing systems. Manag. Sci. 7, 379–392 (1961)CrossRefGoogle Scholar
  14. Haverly C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)CrossRefGoogle Scholar
  15. Haverly C.A.: Behavior of recursion model-more studies. ACM SIGMAP Bull. 26, 22–28 (1979)CrossRefGoogle Scholar
  16. Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 150–173 (2006)CrossRefGoogle Scholar
  17. Liberti L., Pantelides C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)CrossRefGoogle Scholar
  18. McCormick G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRefGoogle Scholar
  19. Meyer C.A., Floudas C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)CrossRefGoogle Scholar
  20. Misener R., Gounaris C.E., Floudas C.A.: Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints. Comput. Chem. Eng. 34, 1432–1456 (2010)CrossRefGoogle Scholar
  21. Palacios-Gomez F. Lasdon L., Lasdon F., Engquist M.: Nonlinear optimization by successive linear programming. Manag. Sci. 28(10), 1106–1120 (1982)CrossRefGoogle Scholar
  22. Quesada I., Grossmann I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19(12), 1219–1242 (1995)CrossRefGoogle Scholar
  23. Ryoo H.S., Sahinidis N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)Google Scholar
  24. Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)CrossRefGoogle Scholar
  25. Sahinidis N.V., Tawarmalani M.: Accelerating branch-and-bound through a modeling language construct for relaxation-specific constraints. J. Glob. Optim. 32(2), 259–280 (2005)CrossRefGoogle Scholar
  26. Sarker R.A., Gunn E.A.: A simple SLP algorithm for solving a class of nonlinear programs. Eur. J. Oper. Res. 101(1), 140–154 (1997)CrossRefGoogle Scholar
  27. Shectman J.P., Sahinidis N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12(1), 1–35 (1998)CrossRefGoogle Scholar
  28. Sherali H.D., Adams W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  29. Sherali H.D., Adams W.P., Driscoll P.J.: Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems. Oper. Res. 46(3), 396–405 (1998)CrossRefGoogle Scholar
  30. Visweswaran V., Floudas C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs–II. Application of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)CrossRefGoogle Scholar
  31. Zhang J.H., Kim N.H., Lasdon L.: An improved successive linear-programming algorithm. Manag. Sci. 31(10), 1312–1331 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations