Journal of Global Optimization

, Volume 57, Issue 1, pp 3–50 | Cite as

GloMIQO: Global mixed-integer quadratic optimizer

  • Ruth Misener
  • Christodoulos A. FloudasEmail author


This paper introduces the global mixed-integer quadratic optimizer, GloMIQO, a numerical solver addressing mixed-integer quadratically-constrained quadratic programs to \({\varepsilon}\)-global optimality. The algorithmic components are presented for: reformulating user input, detecting special structure including convexity and edge-concavity, generating tight convex relaxations, partitioning the search space, bounding the variables, and finding good feasible solutions. To demonstrate the capacity of GloMIQO, we extensively tested its performance on a test suite of 399 problems of diverse size and structure. The test cases are taken from process networks applications, computational geometry problems, GLOBALLib, MINLPLib, and the Bonmin test set. We compare the performance of GloMIQO with respect to four state-of-the-art global optimization solvers: BARON 10.1.2, Couenne 0.4, LindoGLOBAL, and SCIP 2.1.0.


Mixed-integer quadratically-constrained quadratic programs Numerical optimization software Mathematical programming reformulations Branch-and-bound global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10898_2012_9874_MOESM1_ESM.pdf (128 kb)
ESM 1 (PDF 128 kb)


  1. 1.
    Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009).
  2. 2.
    Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)CrossRefGoogle Scholar
  3. 3.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR (2008)Google Scholar
  4. 4.
    Adams, W.P., Johnson, T.A.: Improved linear programming-based lower bounds for the quadratic assignment problem. In: Wolkowicz, H., Pardalos, P.M. (eds.) Quadratic Assignment and Related Problems: DIMACS Workshop. American Mathematical Society (1994)Google Scholar
  5. 5.
    Adhya N., Tawarmalani M., Sahinidis N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1965–1972 (1999)CrossRefGoogle Scholar
  6. 6.
    Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)CrossRefGoogle Scholar
  7. 7.
    Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice differentiable NLPs-II. Implementation computional results. Comput. Chem. Eng. 22, 1159–1179 (1998)CrossRefGoogle Scholar
  8. 8.
    Aggarwal A., Floudas C.A.: Synthesis of general distillation sequences—nonsharp separations. Comput. Chem. Eng. 14(6), 631–653 (1990)CrossRefGoogle Scholar
  9. 9.
    Ahmetovićs E., Grossmann I.E.: Global superstructure optimization for the design of integrated process water networks. AIChE J. 57(2), 434–457 (2011)CrossRefGoogle Scholar
  10. 10.
    Ahmetović, E., Grossmann, I.E.: Integrated process water networks design problem, 2010. Available from CyberInfrastructure for MINLP [, a collaboration of Carnegie Mellon University and IBM Research] at:
  11. 11.
    Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)CrossRefGoogle Scholar
  12. 12.
    Almutairi H., Elhedhli S.: A new Lagrangean approach to the pooling problem. J. Global Optim. 45, 237–257 (2009)CrossRefGoogle Scholar
  13. 13.
    Alva-Argáez A., Kokossis A.C., Smith R.: Wastewater minimisation of industrial systems using an integrated approach. Comput. Chem. Eng. 22, S741–S744 (1998)CrossRefGoogle Scholar
  14. 14.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 3rd edn (1999)Google Scholar
  15. 15.
    Androulakis I.P., Maranas C.D., Floudas C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7, 337–363 (1995)CrossRefGoogle Scholar
  16. 16.
    Anstreicher K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43(2–3), 471–484 (2009)CrossRefGoogle Scholar
  17. 17.
    Anstreicher K.M., Burer S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124(1–2), 33–43 (2010)CrossRefGoogle Scholar
  18. 18.
    Audet C., Hansen P., Jaumard B., Savard G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)Google Scholar
  19. 19.
    Audet C., Hansen P., Messine F., Xiong J.: The largest small octagon. J. Comb. Theory Ser. A 98(1), 46–59 (2002)CrossRefGoogle Scholar
  20. 20.
    Audet C., Brimberg J., Hansen P., Le Digabel S., Mladenovic N.: Pooling problem: alternate formulations and solution methods. Manage. Sci. 50(6), 761–776 (2004)CrossRefGoogle Scholar
  21. 21.
    Audet C., Hansen P., Messine F.: The small octagon with longest perimeter. J. Comb. Theory Ser. A 114(1), 135–150 (2007)CrossRefGoogle Scholar
  22. 22.
    Bagajewicz M.: A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 24, 2093–2113 (2000)CrossRefGoogle Scholar
  23. 23.
    Baliban R.C., Elia J.A., Floudas C.A.: Toward novel hybrid biomass, coal, and natural gas processes for satisfying current transportation fuel demands, 1: Process alternatives, gasification modeling, process simulation, and economic analysis. Ind. Eng. Chem. Res. 49(16), 7343–7370 (2010)CrossRefGoogle Scholar
  24. 24.
    Baliban R.C., Elia J.A., Floudas C.A.: Optimization framework for the simultaneous process synthesis, heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility. Comput. Chem. Eng. 35(9), 1647–1690 (2011)CrossRefGoogle Scholar
  25. 25.
    Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. doi: 10.1007/s10107-011-0462-2
  26. 26.
    Bao X., Sahinidis N.V., Tawarmalani M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)CrossRefGoogle Scholar
  27. 27.
    Belotti P., Lee J., Liberti L., Margot F., Wächter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)CrossRefGoogle Scholar
  28. 28.
    Ben-Tal A., Eiger G., Gershovitz V.: Global minimization by reducing the duality gap. Math. Program. 63, 193–212 (1994)CrossRefGoogle Scholar
  29. 29.
    Bergamini M.L., Grossmann I., Scenna N., Aguirre P.: An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput. Chem. Eng. 32(3), 477–493 (2008)CrossRefGoogle Scholar
  30. 30.
    Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. Technical report 09-23, ZIB, Takustr.7, 14195 Berlin (2009)Google Scholar
  31. 31.
    Berthold, T., Gleixner, A.M., Heinz, S., Vigerske, S.: On the computational impact of MIQCP solver components. Technical report 11-01, ZIB, Takustr.7, 14195 Berlin (2011)Google Scholar
  32. 32.
    Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D., Lee J., Lodi A., Margot F., Sawaya N., Wächter A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)CrossRefGoogle Scholar
  33. 33.
    Brooke, A., Kendrick, D., Meeraus, A.: General algebraic modeling language (GAMS)., 2009. Version 23.3.0
  34. 34.
    Burer S., Letchford A.N.: On nonconvex quadratic programming with box constraints. SIAM J. Optim. 20(2), 1073–1089 (2009)CrossRefGoogle Scholar
  35. 35.
    Burer S., Vandenbussche D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)CrossRefGoogle Scholar
  36. 36.
    Bussieck M.R., Vigerske S.: MINLP solver software. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds) Wiley Encyclopedia of Operations Research and Management Science, Wiley, Chichester (2010)Google Scholar
  37. 37.
    Bussieck M.R., Drud A.S., Meeraus A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)CrossRefGoogle Scholar
  38. 38.
    Cambini R., Sodini C.: Decomposition methods for solving nonconvex quadratic programs via branch and bound. J. Global Optim. 33, 313–336 (2005)CrossRefGoogle Scholar
  39. 39.
    Ciric A.R., Floudas C.A.: A retrofit approach for heat exchanger networks. Comput. Chem. Eng. 13(6), 703–715 (1989)CrossRefGoogle Scholar
  40. 40.
    Costa, A., Hansen, P., Liberti, L.: On the impact of symmetry-breaking constraints on spatial branch-and-bound for circle packing in a square. (2011)
  41. 41.
    Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)CrossRefGoogle Scholar
  42. 42.
    Domes F.: GloptLab—a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems. Optim. Methods Softw. 24, 727–747 (2009)CrossRefGoogle Scholar
  43. 43.
    Domes F., Neumaier A.: A scaling algorithm for polynomial constraint satisfaction problems. J. Global Optim. 42, 327–345 (2008)CrossRefGoogle Scholar
  44. 44.
    Domes F., Neumaier A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429 (2010)CrossRefGoogle Scholar
  45. 45.
    Domes F., Neumaier A.: Rigorous enclosures of ellipsoids and directed cholesky factorizations. SIAM J. Matrix Anal. Appl. 32, 262–285 (2011)CrossRefGoogle Scholar
  46. 46.
    Dorneich M.C., Sahinidis N.V.: Global optimization algorithms for chip layout and compaction. Eng. Optim. 25, 131–154 (1995)CrossRefGoogle Scholar
  47. 47.
    Duran M.A., Grossmann I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)CrossRefGoogle Scholar
  48. 48.
    Duran M.A., Grossmann I.E.: A mixed-integer nonlinear programming algorithm for process systems synthesis. AIChE J. 32(4), 592–606 (1986)CrossRefGoogle Scholar
  49. 49.
    Elia J.A., Baliban R.C., Floudas C.A.: Toward novel hybrid biomass, coal, and natural gas processes for satisfying current transportation fuel demands, 2: simultaneous heat and power integration. Ind. Eng. Chem. Res. 49(16), 7371–7388 (2010)CrossRefGoogle Scholar
  50. 50.
    Faria D.C., Bagajewicz M.J.: On the appropriate modeling of process plant water systems. AIChE J. 56(3), 668–689 (2010)Google Scholar
  51. 51.
    Floudas C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)Google Scholar
  52. 52.
    Floudas C.A.: Deterministic Global Optimization : Theory, Methods and Applications. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  53. 53.
    Floudas C.A., Aggarwal A.: A decomposition strategy for global optimum search in the pooling problem. ORSA J. Comput. 2, 225–235 (1990)CrossRefGoogle Scholar
  54. 54.
    Floudas C.A., Anastasiadis S.H.: Synthesis of distillation sequences with several multicomponent feed and product streams. Chem. Eng. Sci. 43(9), 2407–2419 (1988)CrossRefGoogle Scholar
  55. 55.
    Floudas C.A., Gounaris C.E.: A review of recent advances in global optimization. J. Global Optim. 45(1), 3–38 (2009)CrossRefGoogle Scholar
  56. 56.
    Floudas C.A., Grossmann I.E.: Synthesis of flexible heat-exchanger networks with uncertain flowrates and temperatures. Comput. Chem. Eng. 11(4), 319–336 (1987)CrossRefGoogle Scholar
  57. 57.
    Floudas C.A., Pardalos P.M.: State-of-the-art in global optimization—computational methods and applications—preface. J. Global Optim. 7(2), 113 (1995)CrossRefGoogle Scholar
  58. 58.
    Floudas C.A., Paules G.E.: A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences. Comput. Chem. Eng. 12(6), 531–546 (1988)CrossRefGoogle Scholar
  59. 59.
    Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gms Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  60. 60.
    Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)CrossRefGoogle Scholar
  61. 61.
    Foulds L.R., Haughland D., Jornsten K.: A bilinear approach to the pooling problem. Optimization 24, 165–180 (1992)CrossRefGoogle Scholar
  62. 62.
    Galan B., Grossmann I.E.: Optimal design of distributed wastewater treatment networks. Ind. Eng. Chem. Res. 37(10), 4036–4048 (1998)CrossRefGoogle Scholar
  63. 63.
    Gau C.Y., Schrage L.E.: Implementation and testing of a branch-and-bound based method for deterministic global optimization: operations research applications. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers in Global Optimization, pp. 145–164. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  64. 64.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT. (1999) Version 5.3
  65. 65.
    Gounaris C.E., Misener R., Floudas C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)CrossRefGoogle Scholar
  66. 66.
    Hasan M.M.F., Karimi I.A.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE J. 56(7), 1880–1893 (2010)CrossRefGoogle Scholar
  67. 67.
    Haverly C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)CrossRefGoogle Scholar
  68. 68.
    Horst, R., Hoang, T.: Global optimization: deterministic approaches. Springer (1996). ISBN 9783540610380Google Scholar
  69. 69.
  70. 70.
    Janak S.L., Floudas C.A.: Improving unit-specific event based continuous-time approaches for batch processes: Integrality gap and task splitting. Comput. Chem. Eng. 32(4–5), 913–955 (2008)CrossRefGoogle Scholar
  71. 71.
    Jeżowski J.: Review of water network design methods with literature annotations. Ind. Eng. Chem. Res. 49(10), 4475–4516 (2010)CrossRefGoogle Scholar
  72. 72.
    Kallrath J.: Cutting circles and polygons from area-minimizing rectangles. J. Global Optim. 43, 299–328 (2009)CrossRefGoogle Scholar
  73. 73.
    Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)CrossRefGoogle Scholar
  74. 74.
    Klepeis J.L., Floudas C.A., Morikis D., Tsokos C.G., Lambris J.D.: Design of peptide analogues with improved activity using a novel de novo protein design approach. Ind. Eng. Chem. Res. 43(14), 3817–3826 (2004)CrossRefGoogle Scholar
  75. 75.
    Kokossis A.C., Floudas C.A.: Synthesis of isothermal reactor–separator–recycle systems. Chem. Eng. Sci. 46(5–6), 1361–1383 (1991)Google Scholar
  76. 76.
    Kokossis A.C., Floudas C.A.: Optimization of complex reactor networks—II. Nonisothermal operation. Chem. Eng. Sci. 49(7), 1037–1051 (1994)CrossRefGoogle Scholar
  77. 77.
    Lebbah Y., Michel C., Rueher M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10(1), 47–65 (2005)CrossRefGoogle Scholar
  78. 78.
    Lee H., Pinto J.M., Grossmann I.E., Park S.: Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind. Eng. Chem. Res. 35(5), 1630–1641 (1996)CrossRefGoogle Scholar
  79. 79.
    Lee S., Grossmann I.E.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27(11), 1557–1575 (2003)CrossRefGoogle Scholar
  80. 80.
    Li J., Li A., Karimi I.A., Srinivasan R.: Improving the robustness and efficiency of crude scheduling algorithms. AIChE J. 53(10), 2659–2680 (2007)CrossRefGoogle Scholar
  81. 81.
    Li J., Misener R., Floudas C.A.: Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012)CrossRefGoogle Scholar
  82. 82.
    Li, X., Tomasgard, A., Barton, P.I.: Decomposition strategy for the stochastic pooling problem. J. Global Optim. doi: 10.1007/s10898-011-9792-0
  83. 83.
    Li X., Armagan E., Tomasgard A., Barton P.I.: Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE J. 57(8), 2120–2135 (2011)CrossRefGoogle Scholar
  84. 84.
    Liberti L.: Reduction constraints for the global optimization of NLPs. Int. Trans. Oper. Res. 11, 33–41 (2004)CrossRefGoogle Scholar
  85. 85.
    Liberti L., Pantelides C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Global Optim. 36(2), 161–189 (2006)CrossRefGoogle Scholar
  86. 86.
    Lin X., Floudas C.A.: Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation. Comput. Chem. Eng. 25(4–6), 665–674 (2001)CrossRefGoogle Scholar
  87. 87.
    Lin Y., Schrage L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)CrossRefGoogle Scholar
  88. 88.
    Lougee-Heimer R.: The common optimization interface for operations research: promoting open-source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)CrossRefGoogle Scholar
  89. 89.
    Maranas C.D., Floudas C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2), 143–182 (1995)CrossRefGoogle Scholar
  90. 90.
    Maranas C.D., Androulakis I.P., Floudas C.A., Berger A.J., Mulvey J.M.: Solving long-term financial planning problems via global optimization. J. Econ. Dyn. Control 21(8–9), 1405–1425 (1997)CrossRefGoogle Scholar
  91. 91.
    McCormick G.P.: Computability of global solutions to factorable nonconvex programs: part 1-convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRefGoogle Scholar
  92. 92.
  93. 93.
    Meyer C.A., Floudas C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)CrossRefGoogle Scholar
  94. 94.
    Meyer C.A., Floudas C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  95. 95.
    Meyer C.A., Floudas C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Global Optim. 29(2), 125–155 (2004)CrossRefGoogle Scholar
  96. 96.
    Meyer C.A., Floudas C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)CrossRefGoogle Scholar
  97. 97.
    Misener R., Floudas C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)Google Scholar
  98. 98.
    Misener R., Floudas C.A.: Global optimization of large-scale pooling problems: quadratically constrained MINLP models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)CrossRefGoogle Scholar
  99. 99.
    Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. B. (accepted for publication)
  100. 100.
    Misener R., Gounaris C.E., Floudas C.A.: Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints. Comput. Chem. Eng. 34(9), 1432–1456 (2010)CrossRefGoogle Scholar
  101. 101.
    Misener R., Thompson J.P., Floudas C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)CrossRefGoogle Scholar
  102. 102.
    Mouret, S., Grossmann, I.E.: Crude-oil operations scheduling. Available from CyberInfrastructure for MINLP [, a collaboration of Carnegie Mellon University and IBM Research] at: (2010)
  103. 103.
    Mouret S., Grossmann I.E., Pestiaux P.: A novel priority-slot based continuous-time formulation for crude-oil scheduling problems. Ind. Eng. Chem. Res. 48(18), 8515–8528 (2009)CrossRefGoogle Scholar
  104. 104.
    Mouret S., Grossmann I.E., Pestiaux P.: A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling. Comput. Chem. Eng. 35(12), 2750–2766 (2011)CrossRefGoogle Scholar
  105. 105.
    Nowak, I.: Relaxation and decomposition methods for mixed integer nonlinear programming. International Series of Numerical Mathematics. Birkhäuser (2005) ISBN 9783764372385Google Scholar
  106. 106.
    Pardalos P.M.: Global optimization algorithms for linearly constrained indefinite quadratic problems. Comput. Math. Appl. 21(6–7), 87–97 (1991)CrossRefGoogle Scholar
  107. 107.
    Pham V., Laird C., El-Halwagi M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48, 1973–1979 (2009)CrossRefGoogle Scholar
  108. 108.
    Ponce-Ortega J.M., El-Halwagi M.M., Jiménez-Gutiérrez A.: Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints. Comput. Chem. Eng. 34(3), 318–330 (2010)CrossRefGoogle Scholar
  109. 109.
    Quesada I., Grossmann I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)CrossRefGoogle Scholar
  110. 110.
    Rebennack S., Kallrath J., Pardalos P.M.: Column enumeration based decomposition techniques for a class of non-convex MINLP problems. J. Global Optim. 43(2–3), 277–297 (2009)CrossRefGoogle Scholar
  111. 111.
    Rikun A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10, 425–437 (1997)CrossRefGoogle Scholar
  112. 112.
    Rios L., Sahinidis N.V.: Portfolio optimization for wealth-dependent risk preferences. Ann. Oper. Res. 177, 63–90 (2010)CrossRefGoogle Scholar
  113. 113.
    Rosen J.B., Pardalos P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34(2), 163–174 (1986)CrossRefGoogle Scholar
  114. 114.
    Ruiz, J.P., Grossmann, I.E.: Water treatment network design. Available from CyberInfrastructure for MINLP [, a collaboration of Carnegie Mellon University and IBM Research] at: (2009)
  115. 115.
    Ruiz J.P., Grossmann I.E.: Exploiting vector space properties to strengthen the relaxation of bilinear programs arising in the global optimization of process networks. Optim. Lett. 5, 1–11 (2011)CrossRefGoogle Scholar
  116. 116.
    Ruiz J.P., Grossmann I.E.: Using redundancy to strengthen the relaxation for the global optimization of MINLP problems. Comput. Chem. Eng. 35, 2729–2740 (2011)CrossRefGoogle Scholar
  117. 117.
    Ryoo H.S., Sahinidis N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)Google Scholar
  118. 118.
    Ryoo H.S., Sahinidis N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8, 107–138 (1996)CrossRefGoogle Scholar
  119. 119.
    Saif Y., Elkamel A., Pritzker M.: Global optimization of reverse osmosis network for wastewater treatment and minimization. Ind. Eng. Chem. Res. 47(9), 3060–3070 (2008)CrossRefGoogle Scholar
  120. 120.
    Sawaya, N.W.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. PhD in chemical engineering, Carnegie Mellon University (2006)Google Scholar
  121. 121.
    Saxena A., Bonami P., Lee J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124(1–2), 383–411 (2010)CrossRefGoogle Scholar
  122. 122.
    Saxena A., Bonami P., Lee J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2011)CrossRefGoogle Scholar
  123. 123.
    Selot A., Kuok L.K., Robinson M., Mason T.L., Barton P.I.: A short-term operational planning model for natural gas production systems. AIChE J. 54(2), 495–515 (2008)CrossRefGoogle Scholar
  124. 124.
    Sherali, H., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programming problems. J. Global Optim. doi: 10.1007/s10898-011-9757-3
  125. 125.
    Sherali H.D., Adams W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  126. 126.
    Sherali H.D., Alameddine A.: A new reformulation-linearization technique for bilinear programming problems. J. Global Optim. 2, 379–410 (1992)CrossRefGoogle Scholar
  127. 127.
    Sherali H.D., Tuncbilek C.H.: A reformulation-convexification approach for solving nonconvex quadratic-programming problems. J. Global Optim. 1(7), 1–31 (1995)CrossRefGoogle Scholar
  128. 128.
    Sherali H.D., Tuncbilek C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)CrossRefGoogle Scholar
  129. 129.
    Smith E.M.B., Pantelides C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex minlps. Comput. Chem. Eng. 23(4–5), 457–478 (1999)CrossRefGoogle Scholar
  130. 130.
    Tardella, F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discret. Appl. Math. 22, 191–195 (1988/1989)Google Scholar
  131. 131.
    Tardella F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds) Frontiers in Global Optimization, pp. 563–573. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  132. 132.
    Tardella F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)CrossRefGoogle Scholar
  133. 133.
    Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Applications, Software, and Applications, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Norwell (2002)Google Scholar
  134. 134.
    Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)CrossRefGoogle Scholar
  135. 135.
    Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)CrossRefGoogle Scholar
  136. 136.
    Vigerske, S.: COIN-OR/GAMSLinks., 2011. Trunk Revision 1026Google Scholar
  137. 137.
    Visweswaran, V.: MINLP: applications in blending and pooling. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 2114–2121. Springer Science, Dordrecht (2009)Google Scholar
  138. 138.
    Wächter A., Biegler L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)CrossRefGoogle Scholar
  139. 139.
    Wicaksono D.S., Karimi I.A.: Piecewise MILP under-and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations