Journal of Global Optimization

, Volume 57, Issue 4, pp 1173–1192

# Some properties of a hypergeometric function which appear in an approximation problem

• Michael Th. Rassias
Article

## Abstract

In this paper we consider properties and power expressions of the functions $$f:(-1,1)\rightarrow \mathbb{R }$$ and $$f_L:(-1,1)\rightarrow \mathbb{R }$$, defined by
\begin{aligned} f(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma }{\sqrt{1-t^2}}\,\mathrm{d}t \quad \text{ and}\quad f_L(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma \log (1+x t)}{\sqrt{1-t^2}}\,\mathrm{d}t, \end{aligned}
respectively, where $$\gamma$$ is a real parameter, as well as some properties of a two parametric real-valued function $$D(\,\cdot \,;\alpha ,\beta ) :(-1,1) \rightarrow \mathbb{R }$$, defined by
\begin{aligned} D(x;\alpha ,\beta )= f(x;\beta )f(x;-\alpha -1)- f(x;-\alpha )f(x;\beta -1),\quad \alpha ,\beta \in \mathbb{R }. \end{aligned}
The inequality of Turán type
\begin{aligned} D(x;\alpha ,\beta )>0,\quad -1<x<1, \end{aligned}
for $$\alpha +\beta >0$$ is proved, as well as an opposite inequality if $$\alpha +\beta <0$$. Finally, for the partial derivatives of $$D(x;\alpha ,\beta )$$ with respect to $$\alpha$$ or $$\beta$$, respectively $$A(x;\alpha ,\beta )$$ and $$B(x;\alpha ,\beta )$$, for which $$A(x;\alpha ,\beta )=B(x;-\beta ,-\alpha )$$, some results are obtained. We mention also that some results of this paper have been successfully applied in various problems in the theory of polynomial approximation and some “truncated” quadrature formulas of Gaussian type with an exponential weight on the real semiaxis, especially in a computation of Mhaskar–Rahmanov–Saff numbers.

## Keywords

Approximation Expansion Minimum Maximum  Turán type inequality Hypergeometric function Gamma function Digamma function

## Mathematics Subject Classification (2000)

26D07 26D15 33C05 41A10 41A17 49K05

## References

1. 1.
Alpár, L.: In memory of Paul Turán. J. Number Theory 13, 271–278 (1981)
2. 2.
Alzer, H., Felder, G.: A Turán-type inequality for the gamma function. J. Math. Anal. Appl. 350, 276–282 (2009)
3. 3.
Alzer, H., Gerhold, S., Kauers, M., Lupaş, A.: On Turán’s inequality for Legendre polynomials. Expo. Math. 25, 181–186 (2007)
4. 4.
Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, New York (1999)
5. 5.
Barnard, R.W., Gordy, M.B., Richards, K.C.: A note on Turán type and mean inequalities for the Kummer function. J. Math. Anal. Appl. 349, 259–263 (2009)
6. 6.
Baricz, Á.: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256, 895–911 (2007)Google Scholar
7. 7.
Baricz, Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expo. Math. 26, 279–293 (2008)Google Scholar
8. 8.
Baricz, Á.: Turán type inequalities for hypergeometric functions. Proc. Am. Math. Soc. 136, 3223–3229 (2008)Google Scholar
9. 9.
Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math. Anal. Appl. 388, 716–724 (2012)Google Scholar
10. 10.
Dimitrov, D.K., Kostov, V.P.: Sharp Turán inequalities via very hyperbolic polynomials. J. Math. Anal. Appl. 376, 385–392 (2011)
11. 11.
Ismail, M.E.H., Laforgia, A.: Monotonicity properties of determinants of special functions. Constr. Approx. 26, 1–9 (2007)
12. 12.
Luke, Y.L.: Mathematical Functions and Their Approximations. Academic Press, New York (1975)Google Scholar
13. 13.
Mastroianni, G., Milovanović, G.V.: Interpolation Processes—Basic Theory and Applications. Springer verlag, Berlin (2008)
14. 14.
Mastroianni, G., Milovanović, G.V., Notarangelo, I.: Gaussian quadrature rules with an exponential weight on the real semiaxis, (in preparation)Google Scholar
15. 15.
McEliece, R.J., Reznick, B., Shearer, J.B.: A Turán inequality arising in information theory. SIAM J. Math. Anal. 12, 931–934 (1981)
16. 16.
Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Vol. 1. Elementary functions (Translated from the Russian and with a preface by N. M. Queen). Gordon and Breach Science Publishers, New York (1986)Google Scholar
17. 17.
Sprugnoli, R.: Riordan Array Proofs of Identities in Gould’s Book, Preprint, Firenze (2006). http://www.dsi.unifi.it/resp/GouldBK.pdf
18. 18.
Szegő, G.: On an inequality of P. Turán concerning Legendre polynomials. Bull. Am. Math. Soc. 54, 401–405 (1948)
19. 19.
Turán, P.: On the zeros of the polynomials of Legendre. Čas. Pěst. Mat. Fys. 75, 113–122 (1950)Google Scholar