Journal of Global Optimization

, Volume 57, Issue 2, pp 499–519 | Cite as

Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

  • Fatma Başak Aydemir
  • Akın Günay
  • Figen Öztoprak
  • Ş. İlker Birbil
  • Pınar YolumEmail author


This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.


Multiagent systems Global optimization Cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbucha D., Czarnowski I., Jȩdrzejowicz P., Ratajczak-Ropel E., Wierzbowska I.: JABAT middleware as a tool for solving optimization problems. In: Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence II, vol. 6450 of Lecture Notes in Computer Science, pp. 181–195. Springer, Berlin (2010)CrossRefGoogle Scholar
  2. 2.
    Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak, E., Wierzbowska, I.: JADE-based A-Team as a tool for implementing population based algorithms. In: Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA), pp. 144–146 (2006)Google Scholar
  3. 3.
    Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent development environment. In: AGENTS ’01: Proceedings of the fifth international conference on Autonomous agents, pp. 216–217. ACM, New York, NY, USA (2001)Google Scholar
  4. 4.
    Bordini R.H., Wooldridge M., Hübner J.F.: Programming Multi-Agent Systems in AgentSpeak using (Jason Wiley Series in Agent Technology). Wiley, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of European Conference on Artificial Life, pp. 134–142 (1991)Google Scholar
  6. 6.
    Crainic T.G., Gendreau M., Hansen P., Miladenovic N.: Cooperative parallel variable neighborhood search for the p-median. J. Heuristics 10, 293–314 (2004)CrossRefGoogle Scholar
  7. 7.
    Birbil Ş. I., Fang S.-C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25(3), 263–282 (2003)CrossRefGoogle Scholar
  8. 8.
    Dignum, F., Greaves, M. (eds): Issues in Agent Communication. Springer, London (2000)Google Scholar
  9. 9.
    Dignum, V.: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models, chapter 1. IGI Global (2009)Google Scholar
  10. 10.
    Durfee, E.: Distributed problem solving and planning. In: Luck Michael, Mark Vladimr, tepnkov Olga, and Trappl Robert (eds), Multi-Agent Systems and Applications, vol. 2086 of Lecture Notes in Computer Science, pp. 118–149. Springer Berlin/Heidelberg (2006)Google Scholar
  11. 11.
    Eberhard, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  12. 12.
    Gendreau M., Crainic T.G.: Cooperative parallel tabu search for capacitated network design. J. Heuristics 8, 601–627 (2002)CrossRefGoogle Scholar
  13. 13.
    Günay A., Birbil F., Birbil Ş.I., Yolum P.: Solving global optimization problems using mango. In: Hakansson, A., Nguyen, N.T., Hartung, R., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications, vol. 5559 of Lecture Notes in Artificial Intelligence, pp. 783792. Springer, Berlin (2009)Google Scholar
  14. 14.
    Hapner M., Burridge R., Sharma R., Fialli J., Haase K.: Java Message Service API and Tutorial. Addison-Wesley Professional, Reading (2002)Google Scholar
  15. 15.
    Huhns, M.N., Singh, M.P.: Agents and multiagent systems: Themes, approaches, and challenges. In: Readings in Agents, chapter 1, pp. 1–23. Morgan Kaufmann (1998)Google Scholar
  16. 16.
    Kaszkurewicz E., Bhaya A., Baran B.: Parallel asynchronous team algorithms: Convergence and performance analysis. IEEE Trans. Parallel Distrib. Syst. 7(7), 677–688 (1996)CrossRefGoogle Scholar
  17. 17.
    Kraus S.: Negotiation and cooperation in multi-agent environments. Artif. Intell. 94(1-2), 79–97 (1997)CrossRefGoogle Scholar
  18. 18.
    Kerçelli, L., Sezer, A., Öztoprak, F., Birbil, Ş. I., Yolum, P.: MANGO: A multiagent environment for global optimization. In: Proceedings of the AAMAS Workshop on Optimization in Multiagent Systems, pp. 86–91, Estoril, Portugal (2008)Google Scholar
  19. 19.
    Lau, H.C., Wang, H.: A multi-agent approach for solving optimization problems involving expensive resources. In: Proceedings of the ACM Symposium on Applied Computing, pp. 79–83 (2005)Google Scholar
  20. 20.
    Luke S., Cioffi-Revilla C., Panait L., Sullivan K., Balan G.: Mason: A multiagent simulation environment. Simulation 81, 517–527 (2005)CrossRefGoogle Scholar
  21. 21.
    Melab N., Talbi E.-G., Cahon S.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10, 357–380 (2004)CrossRefGoogle Scholar
  22. 22.
    Modi P.J., Shena W., Tambe M., Yokoo M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161, 149–180 (2005)CrossRefGoogle Scholar
  23. 23.
    Moré J.J., Garbow B.S., Hillstrom K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)CrossRefGoogle Scholar
  24. 24.
    Neumaier A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369 (2004)CrossRefGoogle Scholar
  25. 25.
    Nocedal J., Wright S.J.: Numerical Optimization. Springer, Berlin (2006)Google Scholar
  26. 26.
    North M.J., Howe T.R., Collier N.T., Vos J.R.: A declarative model assembly infrastructure for verification and validation. In: Takahashi, S., Sallach, D., Rouchier, J. (eds) Advancing Social Simulation: The First World Congress, pp. 129–140. Springer, Japan (2007)CrossRefGoogle Scholar
  27. 27.
    Östermark R.: A flexible platform for mixed-integer non-linear programming problems. Kybernetes 36(5/6), 652–670 (2007)CrossRefGoogle Scholar
  28. 28.
    R.: Scalability of the genetic hybrid algorithm on a parallel supercomputer. Kybernetes 37(9/10), 1492–1507 (2008)CrossRefGoogle Scholar
  29. 29.
    Pardalos P.M., Romeijn H.E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124(1-2), 209–228 (2000)CrossRefGoogle Scholar
  30. 30.
    Schoen F.: Stochastic techniques for global optimization: A survey of recent advances. J. Glob. Optim. 1(3), 207–228 (1991)CrossRefGoogle Scholar
  31. 31.
    Shehory O., Kraus S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1-2), 165–200 (1998)CrossRefGoogle Scholar
  32. 32.
    Siirola D.S., Hauan S., Westerberg A.W.: Toward agent-based process systems engineering: Proposed framework and application to non-convex optimization. Comput. Chem. Eng. 27, 1801–1811 (2003)CrossRefGoogle Scholar
  33. 33.
    Siirola D.S., Hauan S., Westerberg A.W.: Computing pareto fronts using distributed agents. Comput. Chem. Eng. 29, 113–126 (2004)CrossRefGoogle Scholar
  34. 34.
    Singh M.P., Huhns M.N.: Service-Oriented Computing: Semantics, Processes, Agents. Wiley, Chichester (2005)Google Scholar
  35. 35.
    Staab S., Studer R., Schnurr H., Sure Y.: Knowledge processes and ontologies. IEEE Intell. Syst. 16, 26–34 (2001)CrossRefGoogle Scholar
  36. 36.
    Talbi E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8, 541–564 (2002)CrossRefGoogle Scholar
  37. 37.
    Talukdar S., Baerentzen L., Gove A., De Souza P.: Asynchronous teams: Cooperation schemes for autonomous agents. J. Heuristics 4(4), 295–321 (1998)CrossRefGoogle Scholar
  38. 38.
    Wales D.J., Doye J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)CrossRefGoogle Scholar
  39. 39.
    Winikoff M.: Jack intelligent agents: An industrial strength platform. In: Weiss, G., Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.F. (eds) Multi-Agent Programming, vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, pp. 175–193. Springer, US (2005)Google Scholar
  40. 40.
    Yokoo M., Ishida T.: Search algorithms for agents. In: Weiss, G. (eds) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, The MIT Press, Cambridge (1990)Google Scholar
  41. 41.
    Zlotkin, G., Rosenschein, J.S.: Negotiation and task sharing among autonomous agents in cooperative domains. In: Proceedings of the 11th International Joint Conference on Artificial intelligence—vol. 2, IJCAI’89, pp. 912–917. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, (1989)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Fatma Başak Aydemir
    • 1
  • Akın Günay
    • 1
  • Figen Öztoprak
    • 2
  • Ş. İlker Birbil
    • 2
  • Pınar Yolum
    • 1
    Email author
  1. 1.Department of Computer EngineeringBogazici UniversityIstanbulTurkey
  2. 2.Faculty of Engineering and Natural SciencesSabancı UniversityIstanbulTurkey

Personalised recommendations