Journal of Global Optimization

, Volume 56, Issue 3, pp 855–871 | Cite as

The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances

  • Carlile Lavor
  • Leo Liberti
  • Antonio MucherinoEmail author


The Distance Geometry Problem in three dimensions consists in finding an embedding in \({\mathbb{R}^3}\) of a given nonnegatively weighted simple undirected graph such that edge weights are equal to the corresponding Euclidean distances in the embedding. This is a continuous search problem that can be discretized under some assumptions on the minimum degree of the vertices. In this paper we discuss the case where we consider the full-atom representation of the protein backbone and some of the edge weights are subject to uncertainty within a given nonnegative interval. We show that a discretization is still possible and propose the iBP algorithm to solve the problem. The approach is validated by some computational experiments on a set of artificially generated instances.


Distance geometry Protein conformations NMR data Combinatorial optimization Interval Branch and Prune 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.: The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  2. 2.
    Carvalho R.S., Lavor C., Protti F.: Extending the geometric build-up algorithm for the molecular distance geometry problem. Inf. Process. Lett. 108, 234–237 (2008)CrossRefGoogle Scholar
  3. 3.
    Coope I.D.: Reliable computation of the points of intersection of n spheres in \({\mathbb{R}^n}\) . Australian N. Z. Ind. Appl. Math. J. 42, C461–C477 (2000)Google Scholar
  4. 4.
    Eren, T., Goldenberg, D.K., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, pp. 2673–2684 (2004)Google Scholar
  5. 5.
    Henneberg L.: Die graphische Statik der starren Systeme. B.G. Teubner, Leipzig (1911)Google Scholar
  6. 6.
    Kirkpatrick S., Jr. Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefGoogle Scholar
  7. 7.
    Krislock, N.: Semidefinite facial reduction for low-rank Euclidean distance matrix completion. Ph.D. thesis, University of Waterloo (2010)Google Scholar
  8. 8.
    Lavor, C., Lee, J., Lee-St. John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. (to appear)Google Scholar
  9. 9.
    Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Technical report q-bio/0608012, arXiv (2006)Google Scholar
  10. 10.
    Lavor C., Liberti L., Maculan N.: Molecular distance geometry problem. In: Floudas, C., Pardalos , P. (eds) Encyclopedia of Optimization. 2nd edn, pp. 2305–2311. Springer, New York (2009)Google Scholar
  11. 11.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. (2011, to appear)Google Scholar
  12. 12.
    Lavor, C., Liberti, L., Mucherino, A.: On the solution of molecular distance geometry problems with interval data. In: International Conference on Bioinformatics and Biomedicine, IEEE Conference Proceedings, Hong Kong (2010)Google Scholar
  13. 13.
    Lavor C., Mucherino A., Liberti L., Maculan N.: Discrete approaches for solving molecular distance geometry problems using nmr data. Int. J. Comput. Biosci. 1, 88–94 (2011)Google Scholar
  14. 14.
    Lavor C., Mucherino A., Liberti L., Maculan N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Glob. Optim. 50, 329–344 (2011)CrossRefGoogle Scholar
  15. 15.
    Lee-St. John, A.: Geometric constraint systems with applications in CAD and biology. Ph.D. thesis, University of Massachusetts at Amherst (2008)Google Scholar
  16. 16.
    Liberti L., Lavor C., Maculan N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)CrossRefGoogle Scholar
  17. 17.
    Liberti L., Lavor C., Mucherino A., Maculan N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu, X., Pardalos, P.M.: A tabu based pattern search method for the distance geometry problem. In: Giannessi, F. et al. (eds.) New Trends in Mathematical Programming, pp. 223–234. Kluwer Academic Publishers, The Netherlands (1998)Google Scholar
  19. 19.
    Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of the International Conference on Computational Biology, vol. 58. World Academy of Science, Engineering and Technology, 349–353 (2009)Google Scholar
  20. 20.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. (to appear)Google Scholar
  21. 21.
    Mucherino A., Lavor C., Liberti L., Maculan N.: On the definition of artificial backbones for the discretizable molecular distance geometry problem. Mathematica Balkanica 23, 289–302 (2009)Google Scholar
  22. 22.
    Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an exact and a metaheuristic algorithm for the molecular distance geometry problem. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 333–340. Montreal, ACM (2009)Google Scholar
  23. 23.
    Nilges M., Gronenborn A.M., Brunger A.T., Clore G.M.: Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988)CrossRefGoogle Scholar
  24. 24.
    Nilges M., Macias M.J., O’Donoghue S.I., Oschkinat H.: Automated noesy interpretation with ambiguous distance restraints: The refined nmr solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997)CrossRefGoogle Scholar
  25. 25.
    Pardalos, P.M., Shalloway, D., Xu, G. (eds.): Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding. DIMACS. AMS (1996)Google Scholar
  26. 26.
    Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  27. 27.
    Schlick T.: Molecular modelling and simulation: an interdisciplinary guide. Springer, New York (2002)CrossRefGoogle Scholar
  28. 28.
    So M.-C., Ye Y.: Theory of semidefinite programming for sensor network localization. Math. Programm. 109, 367–384 (2007)CrossRefGoogle Scholar
  29. 29.
    Wu D., Wu Z., Yuan Y.: Rigid versus unique determination of protein structures with geometric buildup. Optim. Lett. 2, 319–331 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Applied Mathematics (IMECC-UNICAMP)State University of CampinasCampinasBrazil
  2. 2.LIX, École PolytechniquePalaiseauFrance
  3. 3.IRISA, University of Rennes 1RennesFrance

Personalised recommendations