Journal of Global Optimization

, Volume 54, Issue 4, pp 689–706 | Cite as

On some convexity properties of the Least Squares Method for pairwise comparisons matrices without the reciprocity condition

  • J. FülöpEmail author
  • W. W. Koczkodaj
  • S. J. Szarek


The relaxation of the reciprocity condition for pairwise comparisons is revisited from the optimization point of view. We show that some special but not extreme cases of the Least Squares Method are easy to solve as convex optimization problems after suitable nonlinear change of variables. We also give some other, less restrictive conditions under which the convexity of a modified problem can be assured, and the global optimal solution of the original problem found by using local search methods. Mathematical and psychological justifications for the relaxation of the reciprocity condition as well as numerical examples are provided.


Pairwise comparisons Convexity properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barvinok, A.: A course in convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)Google Scholar
  2. 2.
    Blankmeyer E.: Approaches to consistency adjustments. J. Optim. Theory Appl. 54, 479–488 (1987)CrossRefGoogle Scholar
  3. 3.
    Bozóki S.: Solution of the least squares method problem of pairwise comparisons matrices. Central Eur. J. Oper. Res. 16, 345–358 (2008)CrossRefGoogle Scholar
  4. 4.
    Carrizosa E., Messine F.: An exact global optimization method for deriving weights from pairwise comparison matrices. J. Global Optim. 38, 237–247 (2007)CrossRefGoogle Scholar
  5. 5.
    Choo E.U., Wedley W.C.: A common framework for deriving preference values from pairwise comparison matrices. Comput. Oper. Res. 31, 893–908 (2004)CrossRefGoogle Scholar
  6. 6.
    Chu A.T.W., Kalaba R.E., Spingarn K.: A comparison of two methods for determining the weight belonging to fuzzy sets. J. Optim. Theory Appl. 4, 531–538 (1979)CrossRefGoogle Scholar
  7. 7.
    Condorcet. M.: Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix, Paris (1785)Google Scholar
  8. 8.
    Crawford G., Williams C.: A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29, 387–405 (1985)CrossRefGoogle Scholar
  9. 9.
    De Jong P.: A statistical approach to Saaty’s scaling method for priorities. J. Math. Psychol. 28, 467–478 (1984)CrossRefGoogle Scholar
  10. 10.
    Diaz-Balteiro L., González-Pachón J., Romero C.: Forest management with multiple criteria and multiple stakeholders: an application to two public forests in Spain. Scand. J. For. Res. 24(1), 87–93 (2009)CrossRefGoogle Scholar
  11. 11.
    Dong Y., Li H., Xu Y.: On reciprocity indexes in the aggregation of fuzzy preference relations using the OWA operator. Fuzzy Sets Syst. 159, 185–192 (2008)CrossRefGoogle Scholar
  12. 12.
    Dopazo E., González-Pachón J.: Consistency-driven approximation of a pairwise comparison matrix. Kybernetika 39(5), 561–568 (2003)Google Scholar
  13. 13.
    Farkas A., Lancaster P., Rózsa P.: Consistency adjustment for pairwise comparison matrices. Numer. Linear Algebra Appl. 10, 689–700 (2003)CrossRefGoogle Scholar
  14. 14.
    Fechner G.T.: Elemente der Psychophysik. Breitkopf & Härtel, Leipzig (1860)Google Scholar
  15. 15.
    Figiel T.: On the moduli of convexity and smoothness. Studia Math. 56, 121–155 (1976)Google Scholar
  16. 16.
    Fülöp J.: A method for approximating pairwise comparison matrices by consistent matrices. J. Global Optim. 42, 423–442 (2008)CrossRefGoogle Scholar
  17. 17.
    Fülöp, J., Koczkodaj, W.W., Szarek, S.J.: A different perspective on a scale for pairwise comparisons. Transactions on Computational Collective Intelligence, Lecture Notes in Computer Science, vol. 6220, pp. 71–84 (2010)Google Scholar
  18. 18.
    Golany B., Kress M.: A multicriteria evaluation method for obtaining weights from ratio-scale matrices. Eur. J. Oper. Res. 69, 210–220 (1993)CrossRefGoogle Scholar
  19. 19.
    González-Pachón J., Rodríguez-Galiano M.I., Romero C.: Transitive approximation to pairwise comparison matrices by using interval goal programming. J. Oper. Res. Soc. 54, 532–538 (2003)CrossRefGoogle Scholar
  20. 20.
    González-Pachón J., Romero C.: A method for dealing with inconsistencies in pairwise comparisons. Eur. J. Oper. Res. 158(2), 351–361 (2004)CrossRefGoogle Scholar
  21. 21.
    González-Pachón J., Romero C.: Inferring consensus weights from pairwise comparison matrices without suitable properties. Ann. Oper. Res. 154, 123–132 (2007)CrossRefGoogle Scholar
  22. 22.
    Hovanov N.V., Kolari J.W., Sokolov M.V.: Deriving weights from general pairwise comparison matrices. Math. Soc. Sci. 55, 205–220 (2008)CrossRefGoogle Scholar
  23. 23.
    Jensen, R.E.: Comparison of eigenvector, least squares, chi squares and logarithmic least squares methods of scaling a reciprocal matrix. Working paper 153, Trinity University (1983)Google Scholar
  24. 24.
    Jensen R.E.: Alternative scaling method for priorities in hierarchical structures. J. Math. Psychol. 28, 317–332 (1984)CrossRefGoogle Scholar
  25. 25.
    Koczkodaj W.W., Orlowski M.: Computing a consistent approximation to a generalized pairwise comparisons matrix. Comput. Math. Appl. 37(2), 79–85 (1999)CrossRefGoogle Scholar
  26. 26.
    Krantz S.G., Parks S.G.: A Primer of Real Analytic Functions. Birkhäuser Verlag, Basel (1992)Google Scholar
  27. 27.
    Kurosh A.G.: Higher Algebra. Mir Publishers, Moscow (1972)Google Scholar
  28. 28.
    Limayem F., Yannou B.: Generalization of the RCGM and LSLR pairwise comparison methods. Comput. Math. Appl. 48(3–4), 539–548 (2004)CrossRefGoogle Scholar
  29. 29.
    Llull, R.: Artifitium electionis personarum (before 1283)Google Scholar
  30. 30.
    Mikhailov L.: A fuzzy programming method for deriving priorities in the analytic hiarerchy process. J. Oper. Res. Soc. 51, 341–349 (2000)Google Scholar
  31. 31.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)Google Scholar
  32. 32.
    Saaty T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)CrossRefGoogle Scholar
  33. 33.
    Sekitani K., Yamaki N.: A logical interpretation for the eigenvalue method in AHP. J. Oper. Res. Soc. Jpn. 42, 219–232 (1999)CrossRefGoogle Scholar
  34. 34.
    Triantaphyllou E., Pardalos P.M., Mann S.H.: The problem of determining membership values in fuzzy sets in real world situations. In: Brown, D.E., White, C.C. (eds) Operations Research and Artificial Intelligence: The integration of problem solving strategies, pp. 197–214. Kluwer Academic Publishers, Dordrecht (1990)CrossRefGoogle Scholar
  35. 35.
    Triantaphyllou E., Lootsma F., Pardalos P.M., Mann S.H.: On the evaluation and application of different scales for quantifying pairwise comparisons in fuzzy sets. J. Multi-Criteria Decis. Anal. 3, 133–155 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Research Group of Operations Research and Decision Systems, Computer and Automation Research Institute, Hungarian Academy of SciencesBudapestHungary
  2. 2.Computer ScienceLaurentian UniversitySudburyCanada
  3. 3.Department of MathematicsCase Western Reserve UniversityClevelandUSA
  4. 4.Université Pierre et Marie Curie-Paris 6ParisFrance

Personalised recommendations