Journal of Global Optimization

, Volume 56, Issue 3, pp 821–844 | Cite as

On estimating workload in interval branch-and-bound global optimization algorithms

  • José L. Berenguel
  • L. G. Casado
  • I. García
  • Eligius M. T. Hendrix
Open Access
Article

Abstract

In general, solving Global Optimization (GO) problems by Branch-and-Bound (B&B) requires a huge computational capacity. Parallel execution is used to speed up the computing time. As in this type of algorithms, the foreseen computational workload (number of nodes in the B&B tree) changes dynamically during the execution, the load balancing and the decision on additional processors is complicated. We use the term left-over to represent the number of nodes that still have to be evaluated at a certain moment during execution. In this work, we study new methods to estimate the left-over value based on the observed amount of pruning. This provides information about the remaining running time of the algorithm and the required computational resources. We focus on their use for interval B&B GO algorithms.

Keywords

Global optimization Interval Arithmetic Branch-and-Bound Workload prediction Parallel algorithms 

References

  1. 1.
    Berner S.: Parallel methods for verified global optimization practice and theory. J. Glob. Optim. 9, 1–22 (1996). doi:10.1007/BF00121748 CrossRefGoogle Scholar
  2. 2.
    Casado L., García I., Csendes T., Ruíz V.: Heuristic rejection in interval global optimization. J. Optim. Theory Appl. (JOTA) 118(1), 27–43 (2003). doi:10.1023/A:1024731306785 CrossRefGoogle Scholar
  3. 3.
    Colville, A.R.: A comparative study of nonlinear programming codes. Technical report 320-2949. IBM Scientific Center, New York (1968)Google Scholar
  4. 4.
    Cornuéjols G., Karamanov M., Li Y.: Early estimates of the size of branch-and-bound trees. INFORMS J. Comput. 18(1), 86–96 (2006). doi:10.1287/ijoc.1040.0107 CrossRefGoogle Scholar
  5. 5.
    Csendes T., Ratz D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34, 922–938 (1997)CrossRefGoogle Scholar
  6. 6.
    Dixon L., Szego G. (ed.): Towards Global Optimization 2. North-Holland Publishing Company, Amsterdam (1978)Google Scholar
  7. 7.
    Eriksson J., Lindström P.: A parallel interval method implementation for global optimization using dynamic load balancing. Reliab. Comput. 1(1), 77–91 (1995). doi:10.1007/BF02390523 CrossRefGoogle Scholar
  8. 8.
    Ferreira A., Pardalos P. (eds.): Solving combinatorial optimization problems in parallel. In: Lecture Notes in Computer Science, vol. 1054. Springer, Berlin (1996). doi:10.1007/BFb0027115
  9. 9.
    Finkel R., Manber U.: A distributed implementation of backtracking. ACM Trans. Program. Lang. Syst. 9(2), 235–256 (1987)CrossRefGoogle Scholar
  10. 10.
    Gendron B., Crainic T.: A parallel branch-and-bound algorithm for multicommodity location with balancing requirements. Comput. Oper. Res. 24(9), 829–847 (1997). doi:10.1016/S0305-0548(96)00094-9 CrossRefGoogle Scholar
  11. 11.
    Gendron B., Crainic T.G.: Parallel branch-and-bound algorithms: survey and synthesis. Oper. Res. 42(6), 1042–1066 (1994)CrossRefGoogle Scholar
  12. 12.
    Hansen E.R., Walster G.W.: Global Optimization Using Interval Analysis. 2nd edn. Marcel Dekker, New York (2004)Google Scholar
  13. 13.
    Henriksen T., Madsen K.: Parallel algorithms for global optimization. Interval Comput. 3(5), 88–95 (1992)Google Scholar
  14. 14.
    Henriksen, T., Madsen, K.: Use of a depth-first strategy in parallel global optimization. Technical report EUR-CS-92-10, Institute for Numerical Analysis, Technical University of Denmark (1992)Google Scholar
  15. 15.
    Ibraev, S.: A new parallel method for verified global optimization. Ph.D. thesis, University of Wuppertal, Wuppertal (2001)Google Scholar
  16. 16.
    Kahou, J.: Some new acceleration mechanisms in verified global optimization. Ph.D. thesis, Bergischen Unviersität Wuppertal (2005)Google Scholar
  17. 17.
    Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating search tree size. In: AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence, pp.1014–1019. AAAI Press, HJ (2006)Google Scholar
  18. 18.
    Knuth D.: Estimating the efficiency of backtrack programs. Math. Comput. 29(129), 121–136 (1975)CrossRefGoogle Scholar
  19. 19.
    Land A., Doig A.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)CrossRefGoogle Scholar
  20. 20.
    Laursen P.: Simple approaches to parallel branch and bound. Parallel Comput. 19, 143–152 (1993)CrossRefGoogle Scholar
  21. 21.
    Little J., Murty K., Sweeney D., Karel C.: An algorithm for the traveling salesman problem. Oper. Res. 11, 972–989 (1963)CrossRefGoogle Scholar
  22. 22.
    Moore R.: Interval Analysis. Prentice-Hall, New Jersey (1966)Google Scholar
  23. 23.
    Moore, R., Hansen, E., Leclerc, A.: Rigorous methods for global optimization. In: Recent Advances in Global Optimization. Princeton University Press, Princeton, NJ, USA, (1992)Google Scholar
  24. 24.
    Moore, R., Kearfott, R., Cloud, M.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)Google Scholar
  25. 25.
    Neumaier A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)Google Scholar
  26. 26.
    Hunsaker O., Hunsaker B., Schaefer A.: Predicting the solution time of branch-and-bound algorithms for mixed-integer programs. INFORMS J. Comput. 23(3), 392–403 (2011). doi:10.1287/ijoc.1100.0405 CrossRefGoogle Scholar
  27. 27.
    Pardalos, P. (ed.): Parallel processing of discrete problems. In: The IMA Volumes in Mathematics and its Applications, vol. 106. Springer, Berlin (1999)Google Scholar
  28. 28.
    Pardalos, P., Resende, M., Ramakrishnan, K. (eds.): Parallel processing of discrete optimization problems: DIMACS workshop, 28–29 April 1994. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 22. American Mathematical Society (1995)Google Scholar
  29. 29.
    Rao V., Kumar V.: Parallel depth first search. part I. Implementation. Int. J. Parallel Program. 16(6), 479–499 (1987). doi:10.1007/BF01389000 CrossRefGoogle Scholar
  30. 30.
    Ratz D., Csendes T.: On the selection of subdivision directions in interval branch and bound methods for global optimization. J. Glob. Optim. 7, 183–207 (1995)CrossRefGoogle Scholar
  31. 31.
    Törn A., Žilinskas A.: Global Optimization, vol. 350. Springer, Berlin (1989)CrossRefGoogle Scholar
  32. 32.
    Trienekens, H., De Bruin, A.: Towards a taxonomy of parallel branch and bound algorithms. Technical report EUR-CS-92-01. Erasmus University Rotterdam (1992)Google Scholar
  33. 33.
    Wiethoff, A.: Verifizierte Globale Optimierung auf Parallelrechnern. Ph.D. thesis, Universität Karlsruhe, Karlsruhe (1998)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • José L. Berenguel
    • 1
  • L. G. Casado
    • 2
  • I. García
    • 3
  • Eligius M. T. Hendrix
    • 3
  1. 1.TIC 146: “Supercomputing–Algorithms” Research groupUniversity of AlmeríaAlmeríaSpain
  2. 2.Computer Architecture and Electronics DepartmentUniversity of AlmeríaAlmeríaSpain
  3. 3.Computer Architecture DepartmentUniversity of MálagaMálagaSpain

Personalised recommendations