Journal of Global Optimization

, Volume 54, Issue 1, pp 47–58 | Cite as

Duality theorems for a new class of multitime multiobjective variational problems



In this work, we consider a new class of multitime multiobjective variational problems of minimizing a vector of functionals of curvilinear integral type. Based on the normal efficiency conditions for multitime multiobjective variational problems, we study duals of Mond-Weir type, generalized Mond-Weir-Zalmai type and under some assumptions of (ρ, b)-quasiinvexity, duality theorems are stated. We give weak duality theorems, proving that the value of the objective function of the primal cannot exceed the value of the dual. Moreover, we study the connection between values of the objective functions of the primal and dual programs, in direct and converse duality theorems. While the results in §1 and §2 are introductory in nature, to the best of our knowledge, the results in §3 are new and they have not been reported in literature.


Multitime multiobjective problem Efficient solution Quasiinvexity Duality 

Mathematics Subject Classification (2000)

65K10 90C29 26B25 26B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antczak T.: Modified ratio objective approach in mathematical programming. J. Optim. Theory Appl. 126(1), 23–40 (2005)CrossRefGoogle Scholar
  2. 2.
    Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007)CrossRefGoogle Scholar
  3. 3.
    Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds): Pareto Optimality, Game Theory and Equilibria. Springer, Berlin (2008)Google Scholar
  4. 4.
    Husain I., Jabeen Z.: Mixed type duality for a programming problem containing support functions. J. Appl. Math. Comput. 15, 211–225 (2004)CrossRefGoogle Scholar
  5. 5.
    Jagannathan R.: Duality for nonlinear fractional programming. Z. Oper. Res. Series A 17(1), 1–3 (1973)Google Scholar
  6. 6.
    Kim D.S., Kim A.L.: Optimality and duality for nondifferentiable multiobjective variational problems. J. Math. Anal. Appl. 274(1), 255–278 (2002)CrossRefGoogle Scholar
  7. 7.
    Mititelu, Şt.: Efficiency and duality for multiobjective fractional problems in optimal control with ρ-quasiinvexity. Int. Conf. Trends Chall. Appl. Math.—ICTCAM 2007. June 20–23 Bucharest (2007)Google Scholar
  8. 8.
    Mititelu Şt.: Efficiency conditions for multiobjective fractional variational problems. Appl. Sci. 10, 162–175 (2008)Google Scholar
  9. 9.
    Mititelu Şt.: Optimality and duality for invex multi-time control problems with mixed constraints. J. Adv. Math. Stud. 2(1), 25–34 (2009)Google Scholar
  10. 10.
    Mititelu Şt., Postolache M.: Mond-Weir dualities with Lagrangians for multiobjective fractional and non-fractional variational problems. J. Adv. Math. Stud. 3(1), 41–58 (2010)Google Scholar
  11. 11.
    Mititelu Şt., Stancu-Minasian I.M.: Invexity at a point: generalization and classifications. Bull. Aust. Math. Soc. 48(1), 117–126 (1993)CrossRefGoogle Scholar
  12. 12.
    Mititelu Şt., Stancu-Minasian I.M.: Efficiency and duality for multiobjective fractional variational problems with (ρ, b)-quasiinvexity. Yugoslav J. Oper. Res. 19(1), 85–99 (2009)CrossRefGoogle Scholar
  13. 13.
    Mond B., Hanson M.A.: Duality for variational problems. J. Math. Anal. Appl. 18, 355–364 (1967)CrossRefGoogle Scholar
  14. 14.
    Mond B., Chandra S., Husain I.: Duality for variational problems with invexity. J. Math. Anal. Appl. 134(2), 322–328 (1988)CrossRefGoogle Scholar
  15. 15.
    Mond B., Husain I.: Sufficient optimality criteria and duality for variational problems with generalized invexity. J. Aust. Math. Soc. Series B 31(1), 108–121 (1989)CrossRefGoogle Scholar
  16. 16.
    Mukherjee R.N., Purnachandra Rao Ch.: Mixed type duality for multiobjective variational problems. J. Math. Anal. Appl. 252(2), 571–586 (2000)CrossRefGoogle Scholar
  17. 17.
    Nahak, C., Mohapatra, R.N.: Nonsmooth ρ-(η, θ)-invexity in multiobjective programming problems. Optim. Lett. doi: 10.1007/s11590-010-0239-1
  18. 18.
    Pitea, A.: Integral geometry and PDE constrained optimization problems. University “Politehnica” of Bucharest, PhD Thesis (in Romanian) (2008)Google Scholar
  19. 19.
    Pitea A., Udrişte C., Mititelu Şt.: PDE-constrained optimization problems with curvilinear functional quotients as objective vectors. Balkan J. Geom. Appl. 14(2), 75–88 (2009)Google Scholar
  20. 20.
    Pitea A., Udrişte C., Mititelu Şt.: New type dualities in PDI and PDE constrained optimization problems. J. Adv. Math. Stud. 2(1), 81–90 (2009)Google Scholar
  21. 21.
    Preda V.: On Mond-Weir duality for variational problems. Rev. Roum. Math. Pures Appl. 38(2), 155–164 (1993)Google Scholar
  22. 22.
    Preda V.: Optimality and duality in fractional multiple objective programming semilocally preinvex and related functions. J. Math. Anal. Appl. 288(2), 365–382 (2003)CrossRefGoogle Scholar
  23. 23.
    Preda V., Gramatovici S.: Some sufficient optimality conditions for class of multiobjective variational problems. An. Univ. Bucureşti, Matematică-Informatică 51(1), 33–43 (2002)Google Scholar
  24. 24.
    Puglisi A.: Generalized convexity and invexity in optimization theory: some new results. Appl. Math. Sci. 3, 2311–2325 (2009)Google Scholar
  25. 25.
    Stancu-Minasian I.M., Mititelu Şt.: Multiobjective fractional variational problems with (ρ, b)-quasiinvexity. Proc. Rom. Acad. Series A 9(1), 5–11 (2008)Google Scholar
  26. 26.
    Udrişte C., Dogaru O., Ţevy I.: Null Lagrangian forms and Euler-Lagrange PDEs. J. Adv. Math. Stud. 1(1–2), 143–156 (2008)Google Scholar
  27. 27.
    Valentine, F.A.: The problem of Lagrange with differentiable inequality as added side conditions. 407–448, In: Contributions to the Calculus of Variations, 1933–37, Univ. of Chicago Press (1937)Google Scholar
  28. 28.
    Zalmai G.J.: Generalized \(({\mathcal F}, b, {\phi}, \rho, \theta)\)-univex n-set functions and semiparametric duality models in multiobjective fractional subset programming. Int. J. Math. Math. Sci. 2005(7), 1109–1133 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.University “Politehnica” of Bucharest, Faculty of Applied SciencesBucharestRomania

Personalised recommendations