Advertisement

Journal of Global Optimization

, Volume 53, Issue 4, pp 737–748 | Cite as

Gap functions and error bounds for quasi variational inequalities

  • Rachana GuptaEmail author
  • Aparna Mehra
Article

Abstract

The paper aims to obtain new local/global error bounds for quasi variational inequality problems in terms of the regularized gap function and the D-gap function. These bounds provide effective estimated distances between a specific point and the exact solution of quasi variational inequality problem.

Keywords

Quasi variational inequality problem Regularized gap function D-gap function Error bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baiocchi C., Capelo A.: Variational and Quasi-variational Inequalities: Apllications to Free Boundary Problems. Wiley, Chichester (1984)Google Scholar
  2. 2.
    Bliemer M.C.J., Bovy P.H.L.: Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transp. Res. Part: Methodol. 37, 501–519 (2003)CrossRefGoogle Scholar
  3. 3.
    Chan D., Pang J.S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)CrossRefGoogle Scholar
  4. 4.
    Donato M.B., Milasi M., Vitanza C.: An existence result of a quasi-variational inequality associated to an equilibrium problem. J. Glob. Optim. 40, 87–97 (2008)CrossRefGoogle Scholar
  5. 5.
    Eaves B.C.: On the basic theorem of complimentarity. Math. Program. 1, 68–75 (1971)CrossRefGoogle Scholar
  6. 6.
    Facchinei F., Pang J.S.: Finite Dimensional Vriational Inequalities And Complimentarity Problems, vol. 1. Springer, Berlin (2003)Google Scholar
  7. 7.
    Facchinei F., Pang J.S.: Finite Dimensional Variational Inequalities And Complimentarity Problems, vol. 2. Springer, Berlin (2003)Google Scholar
  8. 8.
    Fukushima M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)CrossRefGoogle Scholar
  9. 9.
    Fukushima M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)CrossRefGoogle Scholar
  10. 10.
    Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Springer, Berlin (2002)Google Scholar
  11. 11.
    Harker P.T.: Generalized Nash games and quasivariational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)CrossRefGoogle Scholar
  12. 12.
    Huang L.R., Ng K.F.: Equivalent optimization formulations and error bounds for variational inequality problems. J. Optim. Theory Appl. 125, 299–314 (2005)CrossRefGoogle Scholar
  13. 13.
    Jianghua, F., Xiaoguo, W.: Global bounds for cocoercive variational inequalities. Abstr. Appl. Anal. 2007, Article ID 37217 (2007). doi: 10.1155/2007/37217
  14. 14.
    Jian W.P., Soon Y.W.: The generalized Tykhonov well-posedness for system of vector quasi equilibrium problem. Optim. Lett. 4, 501–530 (2010)CrossRefGoogle Scholar
  15. 15.
    Kočvara M., Outrata J.V.: On a class of quasi-variational inequalities. Optim. Method. Softw. 5, 275–295 (1995)CrossRefGoogle Scholar
  16. 16.
    Kubota K., Fukushima F.: Gap function approach to the generalized Nash equilibrium problem. J. Optim. Theory Appl. 144, 511–531 (2009)CrossRefGoogle Scholar
  17. 17.
    Li G., Ng K.F.: Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems. SIAM J. Optim. 20, 667–690 (2009)CrossRefGoogle Scholar
  18. 18.
    Nesterov, Yu., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities, Core Discussion Paper 2006/107 (2006) http://www.core.ucl.ac.be/services/psfiles/dp06/dp2006_107.pdf
  19. 19.
    Noor M.A.: On merit functions for quasivariational inequalities. J. Math. Inequal. 1, 259–268 (2007)CrossRefGoogle Scholar
  20. 20.
    Noor M.A., Noor K.I., Al-Said E.: Iterative methods for solving general quasi-variational inequalities. Optim. Lett. 4, 513–530 (2010)CrossRefGoogle Scholar
  21. 21.
    Noor M.A., Oettli W.: On genral nonlinear complimenterity problem and quasi equilibria. Le Mathematiche 99, 313–331 (1994)Google Scholar
  22. 22.
    Pang J.C., Fukushima M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005)CrossRefGoogle Scholar
  23. 23.
    Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems in Honor of George Isac, Series: Springer Optimization and Its Application, vol. 35. Springer, Berlin (2010)Google Scholar
  24. 24.
    Scrimali, L.: A quasi-variational inequality approach to the financial equilibrium problem, Core Discussion Paper 2006/108 (2006) http://www.core.ucl.ac.be/services/psfiles/dp06/dp2006_108.pdf
  25. 25.
    Solodov M.V.: Merit functions and error bounds for generalized variational inequalities. J. Math. Anal. Appl. 287, 405–414 (2003)CrossRefGoogle Scholar
  26. 26.
    Taji, K.: On gap function for quasi-variational inequalities, Abstr. Appl. Anal. 2008, Article ID 531361 (2008). doi: 10.1155/2008/531361; http://www.emis.de/journals/HOA/AAA/Volume2008/531361.pdf
  27. 27.
    Yamashita N., Fukushima M.: Equivalent unconstrained minimization and global error bounds for variational inequality problems. SIAM J. Control Optim. 35, 273–284 (1997)CrossRefGoogle Scholar
  28. 28.
    Yamashita N., Taji K., Fukushima M.: Unconstrained optimization reformulations of variational inequality problems. J. Optim. Theory Appl. 92, 439–456 (1997)CrossRefGoogle Scholar
  29. 29.
    Yao J.C.: The generalized quasi-variational inequality problem with applications. J. Math. Anal. Appl. 158, 139–160 (1991)CrossRefGoogle Scholar
  30. 30.
    Zhao Y.B., Hu J.: Global bounds for the distance to solutions of co-coercive variational inequalities. Oper. Res. Lett. 35, 409–415 (2007)CrossRefGoogle Scholar
  31. 31.
    Zhao Y.B., Li D.: Monotonicity of fixed point and normal mapping associated with variational inequality and its application. SIAM J. Optim. 11, 962–973 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of TechnologyHauz KhasIndia

Personalised recommendations