Journal of Global Optimization

, Volume 53, Issue 1, pp 69–96 | Cite as

Hybrid extragradient-like methods for generalized mixed equilibrium problems, systems of generalized equilibrium problems and optimization problems

  • Lu-Chuan Ceng
  • Qamrul Hasan Ansari
  • Siegfried Schaible
Article

Abstract

In this paper, we introduce and analyze a new hybrid extragradient-like iterative algorithm for finding a common solution of a generalized mixed equilibrium problem, a system of generalized equilibrium problems and a fixed point problem of infinitely many non expansive mappings. Under some mild conditions, we prove the strong convergence of the sequence generated by the proposed algorithm to a common solution of these three problems. Such solution also solves an optimization problem. Several special cases are also discussed. The results presented in this paper are the supplement, extension, improvement and generalization of the previously known results in this area.

Keywords

Generalized mixed equilibrium problem System of generalized equilibrium problems Optimization problems Hybrid extragradient-like iterative scheme Fixed points Nonexpansive mappings Strong convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acedo G.L., Xu H.K.: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67, 2258–2271 (2007)CrossRefGoogle Scholar
  2. 2.
    Ansari Q.H., Yao J.C.: A fixed point theorem and its applications to the system of variational inequalities. Bull. Austral. Math. Soc. 59, 433–442 (1999)CrossRefGoogle Scholar
  3. 3.
    Bauschke H.H., Borwein J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)CrossRefGoogle Scholar
  4. 4.
    Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)Google Scholar
  5. 5.
    Ceng L.C., Al-Homidan S., Ansari Q.H., Yao J.C.: An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings. J. Comput. Appl. Math. 223, 967–974 (2009)CrossRefGoogle Scholar
  6. 6.
    Ceng L.C., Ansari Q.H., Yao J.C.: Mann type steepest-descent and modified hybrid steepest-descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 29(9–10), 987–1033 (2008)CrossRefGoogle Scholar
  7. 7.
    Ceng L.C., Ansari Q.H., Yao J.C.: Viscosity approximation methods for generalized equilibrium problems and fixed point problems. J. Global Optim. 43, 487–502 (2009)CrossRefGoogle Scholar
  8. 8.
    Ceng L.C., Petrusel A., Yao J.C.: Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. J. Optim. Theory. Appl. 143, 37–58 (2009)CrossRefGoogle Scholar
  9. 9.
    Ceng L.C., Wang C.Y., Yao J.C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Meth. Oper. Res. 67, 375–390 (2008)CrossRefGoogle Scholar
  10. 10.
    Ceng L.C., Yao J.C.: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 190, 205–215 (2007)CrossRefGoogle Scholar
  11. 11.
    Ceng L.C., Yao J.C.: Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. Appl. Math. Comput. 198, 729–741 (2008)CrossRefGoogle Scholar
  12. 12.
    Ceng L.C., Yao J.C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math. 214, 186–201 (2008)CrossRefGoogle Scholar
  13. 13.
    Ceng L.C., Yao J.C.: A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem. Nonlinear Anal. 72, 1922–1937 (2010)CrossRefGoogle Scholar
  14. 14.
    Censor Y., Iusem A.N., Zenios S.A.: An interior point method with Bregman functions for the vari- ational inequality problem with paramonotone operators. Math. Prog. 81, 373–400 (1998)Google Scholar
  15. 15.
    Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis L. (eds): Pareto Optimality, Game Theory and Equilibria. Springer, New York (2008). http://www.springer.com/mathematics/applications/book/978-0-387-77246-2
  16. 16.
    Deutsch F., Yamada I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 19, 33–56 (1998)CrossRefGoogle Scholar
  17. 17.
    Giannessi F., Maugeri A., Pardalos P.M. (eds.): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Springer, New York (2002). http://www.springer.com/mathematics/book/978-1-4020-0161-1
  18. 18.
    Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. Vol. 28. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  19. 19.
    Mohebi, H., Vatandoost, M.: Counterexamples on some articles on quasi-variational inclusion problems, J. Global Optim. (online: http://www.springerlink.com/content/cpw74m164472v190/)
  20. 20.
    Pardalos, P.M., Rassias, T.M., Khan, A.A. (eds.): Nonlinear Analysis and Variational Problems, Springer, New York (2010). http://www.springer.com/mathematics/applications/book/978-1-4419-0157-6
  21. 21.
    Peng J.W., Yao J.C.: A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems. Taiwanese J. Math. 12, 1401–1432 (2008)Google Scholar
  22. 22.
    Suzuki T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)CrossRefGoogle Scholar
  23. 23.
    Shimoji K., Takahashi W.: Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J. Math. 5, 387–404 (2001)Google Scholar
  24. 24.
    Takahashi S., Takahashi W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)CrossRefGoogle Scholar
  25. 25.
    Takahashi S., Takahashi W.: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008)CrossRefGoogle Scholar
  26. 26.
    Verma R.U.: On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot line 3(8), 65–68 (1999)Google Scholar
  27. 27.
    Xu H.K., Kim T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185–201 (2003)CrossRefGoogle Scholar
  28. 28.
    Yao, Y., Liou, Y.C., Yao, J.C.: New relaxed hybrid-extragradient method for fixed point problems, a general system of variational inequality problems and generalized mixed equilibrium problems, Optimization (2010) (in press)Google Scholar
  29. 29.
    Yao Y., Noor M.A., Zainab S., Liou Y.C.: Mixed equilibrium problems and Optimization problems. J. Math. Anal. Appl. 354, 319–329 (2009)CrossRefGoogle Scholar
  30. 30.
    Zeng L.C., Ansari Q.H., Wu S.Y.: Strong convergence theorems of relaxed hybrid steepest-descent methods for variational inequalities. Taiwanese J. Math. 10(1), 13–29 (2006)Google Scholar
  31. 31.
    Zeng L.C., Yao J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math. 10, 1293–1303 (2006)Google Scholar
  32. 32.
    Zeng L.C., Yao J.C.: Mixed projection methods for systems of variational inequalities. J. Global Optim. 41, 465–478 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Lu-Chuan Ceng
    • 1
    • 2
  • Qamrul Hasan Ansari
    • 3
  • Siegfried Schaible
    • 4
  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Scientific Computing Key Laboratory of Shanghai UniversitiesShanghaiChina
  3. 3.Department of MathematicsAligarh Muslim UniversityAligarhIndia
  4. 4.Department of Applied MathematicsChung Yuan Christian UniversityChung-LiTaiwan

Personalised recommendations