Journal of Global Optimization

, Volume 52, Issue 1, pp 139–159 | Cite as

Dual extragradient algorithms extended to equilibrium problems

Article

Abstract

In this paper we propose two iterative schemes for solving equilibrium problems which are called dual extragradient algorithms. In contrast with the primal extragradient methods in Quoc et al. (Optimization 57(6):749–776, 2008) which require to solve two general strongly convex programs at each iteration, the dual extragradient algorithms proposed in this paper only need to solve, at each iteration, one general strongly convex program, one projection problem and one subgradient calculation. Moreover, we provide the worst case complexity bounds of these algorithms, which have not been done in the primal extragradient methods yet. An application to Nash-Cournot equilibrium models of electricity markets is presented and implemented to examine the performance of the proposed algorithms.

Keywords

Dual extragradient algorithm Equilibrium problem Gap function Complexity Nash-Cournot equilibria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum E., Oettli W.: From optimization and variational inequality to equilibrium problems. Math. Student 63, 127–149 (1994)Google Scholar
  2. 2.
    Bruck R.E.: On the weak convergence of an Ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61, 159–164 (1977)CrossRefGoogle Scholar
  3. 3.
    Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds): Pareto Optimality, Game Theory and Equilibria. Springer, Berlin (2008)Google Scholar
  4. 4.
    Cohen G.: Auxiliary problem principle and decomposition of optimization problems. J. Optim. Theory Appl. 32, 277–305 (1980)CrossRefGoogle Scholar
  5. 5.
    Cohen G.: Auxiliary principle extended to variational inequalities. J. Optim. Theory Appl. 59, 325–333 (1988)CrossRefGoogle Scholar
  6. 6.
    Contreras J., Klusch M., Krawczyk J.B.: Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19(1), 195–206 (2004)CrossRefGoogle Scholar
  7. 7.
    Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol I. II. Springer, New York (2003)Google Scholar
  8. 8.
    Flam S.D., Antipin A.S.: Equilibrium programming using proximal-like algorithms. Math. Program. 78, 29–41 (1997)CrossRefGoogle Scholar
  9. 9.
    Giannessi, F., Maugeri, A., Pardalos, P.M. (eds): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2004)Google Scholar
  10. 10.
    Konnov I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2001)CrossRefGoogle Scholar
  11. 11.
    Konnov I.V., Kum S.: Descent methods for mixed variational inequalities in Hilbert spaces. Nonlinear Anal. 47, 561–572 (2001)CrossRefGoogle Scholar
  12. 12.
    Konnov I.V.: Generalized convexity and related topics. In: Konnov, I.V., Luc, D.T., Rubinov, (eds.) A.M. (eds) Combined Relaxation Methods for Generalized Monotone Variational Inequalities, pp. 3–331. Springer, Berlin (2007)Google Scholar
  13. 13.
    Korpelevich G.M.: Extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)Google Scholar
  14. 14.
    Lalitha C.S.: A note on duality of generalized equilibrium problem. Optim. Lett. 4(1), 57–66 (2010)CrossRefGoogle Scholar
  15. 15.
    Li S.J., Zhao P.: A method of duality for mixed vector equilibrium problem. Optim. Lett. 4(1), 85–96 (2010)CrossRefGoogle Scholar
  16. 16.
    Maiorano, A., Song, Y.H., Trovato, M.: Dynamics of noncollusive oligopolistic electricity markets. In: Proceedings IEEE Power Engineering Society Winter Meeting, pp. 838–844, Singapore Jan (2000)Google Scholar
  17. 17.
    Martinet B.: Régularisation d’inéquations variationelles par approximations successives. Revue Française d’Automatique et d’Informatique Recherche Opérationnelle 4, 154–159 (1970)Google Scholar
  18. 18.
    Mastroeni G.: On auxiliary principle for equilibrium problems. Publicatione del Dipartimento di Mathematica dellUniversita di Pisa 3, 1244–1258 (2000)Google Scholar
  19. 19.
    Mastroeni G.: Gap function for equilibrium problems. J. Global Optim. 27(4), 411–426 (2003)CrossRefGoogle Scholar
  20. 20.
    Moudafi A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)Google Scholar
  21. 21.
    Muu L.D., Oettli W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)CrossRefGoogle Scholar
  22. 22.
    Muu L.D., Quoc T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142(1), 185–204 (2009)CrossRefGoogle Scholar
  23. 23.
    Nemirovskii A.S.: Effective iterative methods for solving equations with monotone operators. Ekon. Matem. Met. (Matecon) 17, 344–359 (1981)Google Scholar
  24. 24.
    Nesterov Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. Ser. B 109(2–3), 319–344 (2007)CrossRefGoogle Scholar
  25. 25.
    Nguyen V.H.: Lecture Notes on Equilibrium Problems. CIUF-CUD Summer School on Optimization and Applied Mathematics. Nha Trang, Vietnam (2002)Google Scholar
  26. 26.
    Panicucci B., Pappalardo M., Passacantando M.: On solving generalized Nash equilibrium problems via optimization. Optim. Lett. 3(3), 419–435 (2009)CrossRefGoogle Scholar
  27. 27.
    Pardalos, P.M, Rassias, T.M., Khan, A.A. (eds): Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)Google Scholar
  28. 28.
    Quoc T.D., Muu L.D.: Implementable quadratic regularization methods for solving pseudomonotone equilibrium problems. East West J. Math. 6(2), 101–123 (2004)Google Scholar
  29. 29.
    Quoc T.D., Muu L.D., Nguyen V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)CrossRefGoogle Scholar
  30. 30.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  31. 31.
    Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)CrossRefGoogle Scholar
  32. 32.
    Taskar B., Lacoste-Julien S., Jordan M.I.: Structured prediction, dual extragradient and Bregman projections. J. Mach. Learn. Res. 7, 1627–1653 (2006)Google Scholar
  33. 33.
    Van N.T.T., Strodiot J.J., Nguyen V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Global Optim. 44(2), 175–192 (2009)CrossRefGoogle Scholar
  34. 34.
    Van N.T.T., Strodiot J.J., Nguyen V.H.: A bundle method for solving equilibrium problems. Math. Program. 116, 529–552 (2009)CrossRefGoogle Scholar
  35. 35.
    Wachter A., Biegler L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)CrossRefGoogle Scholar
  36. 36.
    Zhu D.L., Marcotte P.: An extended descent framework for variational inequalities. J. Optim. Theory Appl. 80, 349–366 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Hanoi University of ScienceHanoiVietnam
  2. 2.Department of Electrical Engineering (ESAT/SCD) and OPTECK.U. LeuvenLeuvenBelgium
  3. 3.Posts and Telecommunications Institute of TechnologyHanoiVietnam
  4. 4.Institute of MathematicsHanoiVietnam

Personalised recommendations