Journal of Global Optimization

, Volume 52, Issue 1, pp 1–28 | Cite as

Convergence rate of McCormick relaxations

  • Agustín Bompadre
  • Alexander MitsosEmail author


Theory for the convergence order of the convex relaxations by McCormick (Math Program 10(1):147–175, 1976) for factorable functions is developed. Convergence rules are established for the addition, multiplication and composition operations. The convergence order is considered both in terms of pointwise convergence and of convergence in the Hausdorff metric. The convergence order of the composite function depends on the convergence order of the relaxations of the factors. No improvement in the order of convergence compared to that of the underlying bound calculation, e.g., via interval extensions, can be guaranteed unless the relaxations of the factors have pointwise convergence of high order. The McCormick relaxations are compared with the αBB relaxations by Floudas and coworkers (J Chem Phys, 1992, J Glob Optim, 1995, 1996), which guarantee quadratic convergence. Illustrative and numerical examples are given.


Nonconvex optimization Global optimization Convex relaxation McCormick AlphaBB Interval extensions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB for general twice-differentiable constrained NLPs—II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)CrossRefGoogle Scholar
  2. 2.
    Adjiman C.S., Androulakis I.P., Maranas C.D., Floudas C.A.: A global optimization method, αBB for process design. Comput. Chem. Eng. 20(Suppl A), S419–S424 (1996)CrossRefGoogle Scholar
  3. 3.
    Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB for general twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)CrossRefGoogle Scholar
  4. 4.
    Adjiman C.S., Floudas C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9(1), 23–40 (1996)CrossRefGoogle Scholar
  5. 5.
    Akrotirianakis I.G., Floudas C.A.: Computational experience with a new class of convex underestimators: Box-constrained NLP problems. J. Glob. Optim. 29(3), 249–264 (2004)CrossRefGoogle Scholar
  6. 6.
    Akrotirianakis I.G., Floudas C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30(4), 367–390 (2004)CrossRefGoogle Scholar
  7. 7.
    Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)CrossRefGoogle Scholar
  8. 8.
    Alefeld G., Mayer G.: Interval analysis: Theory and applications. J. Comput. Appl. Math. 121(1–2), 421–464 (2000)CrossRefGoogle Scholar
  9. 9.
    Androulakis I.P., Maranas C.D., Floudas C.A.: αBB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)CrossRefGoogle Scholar
  10. 10.
    Belotti P., Lee J., Liberti L., Margot F., Wachter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)CrossRefGoogle Scholar
  11. 11.
    Bhattacharjee B., Green W.H. Jr., Barton P.I.: Interval methods for semi-infinite programs. Comput. Optim. Appl. 30(1), 63–93 (2005)CrossRefGoogle Scholar
  12. 12.
    Bhattacharjee B., Lemonidis P., Green W.H. Jr., Barton P.I.: Global solution of semi-infinite programs. Math. Program. Ser. B 103(2), 283–307 (2005)CrossRefGoogle Scholar
  13. 13.
    Chachuat, B.: libMC: A numeric library for McCormick relaxation of factorable functions. Documentation and Source Code available at: (2007)
  14. 14.
    Chachuat, B.: MC++: A versatile library for McCormick relaxations and Taylor models. Documentation and Source Code available at: (2010)
  15. 15.
    Du K.S., Kearfott R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994)CrossRefGoogle Scholar
  16. 16.
    Gatzke E.P., Tolsma J.E., Barton P.I.: Construction of convex function relaxations using automated code generation techniques. Optim. Eng. 3(3), 305–326 (2002)CrossRefGoogle Scholar
  17. 17.
    Goldstein A.A., Price J.F.: Descent from local minima. Math. Comput. 25(115), 569–574 (1971)CrossRefGoogle Scholar
  18. 18.
    Gounaris C.E., Floudas C.A.: Tight convex underestimators for C-2-continuous problems: I. Univariate functions. J. Glob. Optim. 42(1), 51–67 (2008)CrossRefGoogle Scholar
  19. 19.
    Gounaris C.E., Floudas C.A.: Tight convex underestimators for C-2-continuous problems: II. Multivariate functions. J. Glob. Optim. 42(1), 69–89 (2008)CrossRefGoogle Scholar
  20. 20.
    Maranas C.D., Floudas C.A.: A global optimization approach for Lennard-Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)CrossRefGoogle Scholar
  21. 21.
    Maranas C.D., Floudas C.A.: Global optimization for molecular conformation problems. Ann. Oper. Res. 42(3), 85–117 (1993)CrossRefGoogle Scholar
  22. 22.
    Maranas C.D., Floudas C.A.: Global minimum potential energy conformations of small molecules. J. Glob. Optim. 4, 135–170 (1994)CrossRefGoogle Scholar
  23. 23.
    Maranas C.D., Floudas C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)CrossRefGoogle Scholar
  24. 24.
    McCormick G.P.: Computability of global solutions to factorable nonconvex programs: Part I. Convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRefGoogle Scholar
  25. 25.
    McCormick G.P.: Nonlinear Programming: Theory, Algorithms and Applications. Wiley, New York (1983)Google Scholar
  26. 26.
    Mitsos A., Chachuat B., Barton P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)CrossRefGoogle Scholar
  27. 27.
    Mitsos A., Lemonidis P., Lee C.K., Barton P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19(1), 77–113 (2008)CrossRefGoogle Scholar
  28. 28.
    Moore R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia, PA (1979)CrossRefGoogle Scholar
  29. 29.
    Munkres J.: Topology, 2nd edn. Prentice Hall, Englewood Cliffs (1999)Google Scholar
  30. 30.
    Neumaier A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004)CrossRefGoogle Scholar
  31. 31.
    Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood Series, Mathematics and its Applications, New York (1984)Google Scholar
  32. 32.
    Ryoo H.S., Sahinidis N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19(4), 403–424 (2001)CrossRefGoogle Scholar
  33. 33.
    Sahinidis, N., Tawarmalani, M.: BARON. (2005)
  34. 34.
    Schöbel A., Scholz D.: The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J. Glob. Optim. 48(3), 473–495 (2010)CrossRefGoogle Scholar
  35. 35.
    Smith E.M.B., Pantelides C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999)CrossRefGoogle Scholar
  36. 36.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Boston (2002)Google Scholar
  37. 37.
    Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Program. 99(3), 563–591 (2004)CrossRefGoogle Scholar
  38. 38.
    Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)CrossRefGoogle Scholar
  39. 39.
    Zlobec S.: On the Liu-Floudas convexification of smooth programs. J. Glob. Optim. 32(3), 401–407 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations