Journal of Global Optimization

, Volume 52, Issue 2, pp 335–351 | Cite as

Variance or spectral density in sampled data filtering?

  • Graham C. Goodwin
  • Juan I. Yuz
  • Mario E. Salgado
  • Juan C. Agüero
Article

Abstract

Most physical systems operate in continuous time. However, to interact with such systems one needs to take samples. This raises the question of the relationship between the sampled response and the response of the underlying continuous-time system. In this paper we review several aspects of the sampling process. In particular, we examine the role played by variance and spectral density in describing discrete random processes. We argue that spectral density has several advantages over variance. We illustrate the ideas by reference to the problem of state estimation using the discrete-time Kalman filter.

Keywords

Estimation Sampled data Kalman filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson B., Moore J.: Optimal Filtering. Prentice Hall, Prentice (1979)Google Scholar
  2. 2.
    Åström K.: Introduction to Stochastic Control Theory. Academic Press, London (1970)Google Scholar
  3. 3.
    Åström K.J., Wittenmark B.: Computer Controlled Systems—Theory and design. Prentice-Hall, Prentice (1997)Google Scholar
  4. 4.
    Christodoulos, F., Pardalos, P.M. (eds): Encyclopedia of Optimization. Springer, Berlin (2009)Google Scholar
  5. 5.
    Churchill R.V., Brown J.W.: Complex variables and applications. McGraw-Hill, New York (1990)Google Scholar
  6. 6.
    Feuer A., Goodwin G.: Sampling in Digital Signal Processing and Control. Birkhäuser, Boston (1996)CrossRefGoogle Scholar
  7. 7.
    Goodwin G., Middleton R., Poor H.: High-speed digital signal processing and control. Proc. IEEE 80(2), 240–259 (1992)CrossRefGoogle Scholar
  8. 8.
    Goodwin G., Graebe S., Salgado M.: Control System Design. Prentice Hall, Prentice (2001)Google Scholar
  9. 9.
    Jazwinski A.: Stochastic Processes and Filtering Theory. Academic Press, London (1970)Google Scholar
  10. 10.
    Kailath T.: Lecture on Wiener and Kalman Filtering. Springer, Berlin (1981)Google Scholar
  11. 11.
    Kloeden P., Platen E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)Google Scholar
  12. 12.
    Mariani F., Pacelli G., Zirilli F.: Maximum likelihood estimation of the Heston stochastic volatility model using asset and option prices: an application of nonlinear filtering theory. Optim. Lett. 2(2), 177–222 (2008)CrossRefGoogle Scholar
  13. 13.
    Middleton R., Goodwin G.: Digital Control and Estimation. A Unified Approach. Prentice Hall, Prentice (1990)Google Scholar
  14. 14.
    Pardalos P.M., Yatsenko V.: Optimization and Control of Bilinear Systems. Springer, Berlin (2009)Google Scholar
  15. 15.
    Salgado M., Middleton R., Goodwin G.: Connection between continuous and discrete Riccati equations with applications to Kalman filtering. Control Theory Appl. IEE Proc. D 135(1), 28–34 (1988)CrossRefGoogle Scholar
  16. 16.
    Söderström T.: Discrete-Time Stochastic Systems—Estimation and Control. Springer, Berlin (2002)CrossRefGoogle Scholar
  17. 17.
    Suchomski P.: Numerical conditioning of delta-domain Lyapunov and Riccati equations. Control Theory Appl. IEE Proc. 148(6), 497–501 (2001)CrossRefGoogle Scholar
  18. 18.
    Villemonteix J., Vazquez E., Sidorkiewicz M., Walter E.: Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria. J. Glob. Optim. 43(2–3), 373–389 (2009)CrossRefGoogle Scholar
  19. 19.
    Wood G., Alexander D., Bulger D.: Approximation of the distribution of convergence times for stochastic global optimisation. J. Glob. Optim. 22(1–4), 271–284 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Graham C. Goodwin
    • 1
  • Juan I. Yuz
    • 2
  • Mario E. Salgado
    • 2
  • Juan C. Agüero
    • 1
  1. 1.Centre for Complex Dynamic Systems and ControlThe University of NewcastleNewcastleAustralia
  2. 2.Department of Electronic EngineeringUniversidad Técnica Federico Santa MaríaValparaisoChile

Personalised recommendations