Journal of Global Optimization

, Volume 49, Issue 3, pp 425–434 | Cite as

An exact algorithm for solving the vertex separator problem

  • Mohamed Didi BihaEmail author
  • Marie-Jean Meurs


Given G = (V, E) a connected undirected graph and a positive integer β(|V|), the vertex separator problem is to find a partition of V into no-empty three classes A, B, C such that there is no edge between A and B, max{|A|, |B|} ≤ β(|V|) and |C| is minimum. In this paper we consider the vertex separator problem from a polyhedral point of view. We introduce new classes of valid inequalities for the associated polyhedron. Using a natural lower bound for the optimal solution, we present successful computational experiments.


Graph partitioning Vertex separator Polyhedral approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balas E., de Souza C.: The vertex separator problem: a polyhedral investigation. Math. Program. 3(103), 583–608 (2005)CrossRefGoogle Scholar
  2. 2.
    Bui T.N., Jones C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42, 153–159 (1992)CrossRefGoogle Scholar
  3. 3.
    Cherkassky B.V., Goldberg A.V.: On implementing Push-Relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1997)CrossRefGoogle Scholar
  4. 4.
    de Souza C., Balas E.: The vertex separator problem: algorithms and computations. Math. Programm. 3(103), 609–631 (2005)CrossRefGoogle Scholar
  5. 5.
    Fu, B., Oprisan, S.A., Xu, L.: Multi-Directional Width-Bounded Geometric Separator and Protein Folding. ISAAC, pp. 995–1006 (2005)Google Scholar
  6. 6.
    Fukuyama J.: NP-completeness of the planar separator problems. J. Graph Algorithms Appl. 4, 317–328 (2006)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractabiliy. W.H. Freeman and Company (1979)Google Scholar
  8. 8.
    Lipton R.J., Tarjan R.E.: A separator theorem for planar graphs. SIAM J. Numer. Anal. 36, 177–189 (1979)Google Scholar
  9. 9.
  10. 10.
  11. 11.

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Non linéaire et Géométrie (EA 2151)Université d’Avignon et des Pays de VaucluseAvignonFrance
  2. 2.LMNO, Université de CaenCaen CedexFrance
  3. 3.Laboratoire Informatique d’Avignon (EA 931)Université d’Avignon et des Pays de VaucluseAvignonFrance

Personalised recommendations