Journal of Global Optimization

, Volume 48, Issue 2, pp 311–321 | Cite as

Refined optimality conditions for differences of convex functions

  • Tuomo Valkonen


We provide a necessary and sufficient condition for strict local minimisers of differences of convex (DC) functions, as well as related results pertaining to characterisation of (non-strict) local minimisers, and uniqueness of global minimisers.


Diff-convex Optimality 

Mathematics Subject Classification (2000)

90C26 90C46 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attouch H., Wets R.J.B.: Quantitative stability of variational systems: II. A framework for nonlinear conditioning. SIAM J. Optim. 3(2), 359–381 (1993)CrossRefGoogle Scholar
  2. 2.
    Dür M.: A parametric characterization of local optimality. Math. Methods Oper. Res. 57, 101–109 (2003)CrossRefGoogle Scholar
  3. 3.
    Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Convexity and Duality in Optimization: Proceedings of the Symposium on Convexity and Duality in Optimization Held at the University of Groningen, The Netherlands, no. 256 in Lecture notes in Economics and Mathematical Systems, pp. 37–70. Springer, New York 22 June 1984Google Scholar
  4. 4.
    Hiriart-Urruty J.B.: From convex optimization to non convex optimization, Part I: necessary and sufficent conditions for global optimality. In: Clarke, F., Demyanov, V., Giannessi, F. (eds) Nonsmooth Optimization and Related Topics, pp. 219–239. Plenum Press, New York (1988)Google Scholar
  5. 5.
    Hiriart-Urruty J.B., Lemaréchal C.: Convex Analysis and Minimization Algorithms I–II. Springer, New York (1993)Google Scholar
  6. 6.
    Martínez-Legaz J.E., Seeger A.: A formula on the approximate subdifferential of the difference of convex functions. Bull. Aust. Math. Soc. 45(1), 37–41 (1992)CrossRefGoogle Scholar
  7. 7.
    Penot J.P.: On the minimization of difference functions. J. Global Optim. 12, 373–382 (1998)CrossRefGoogle Scholar
  8. 8.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1972)Google Scholar
  9. 9.
    Valkonen, T.: Diff-convex combinations of Euclidean distances: a search for optima. No. 99 in Jyväskylä studies in computing. Ph.D Thesis, University of Jyväskylä (2008)Google Scholar
  10. 10.
    Valkonen, T., Kärkkäinen, T.: Clustering and the perturbed spatial median. Submitted (2008)Google Scholar
  11. 11.
    Valkonen, T., Kärkkäinen, T.: Continuous reformulations and heuristics for the Euclidean travelling salesperson problem. ESAIM Control Optim. Calc. Var. 15(4), (2009). doi: 10.1051/cocv:2008056

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations