Journal of Global Optimization

, Volume 47, Issue 1, pp 63–81

Solving the problem of packing equal and unequal circles in a circular container

  • A. Grosso
  • A. R. M. J. U. Jamali
  • M. Locatelli
  • F. Schoen
Article

Abstract

In this paper we propose a Monotonic Basin Hopping approach and its population-based variant Population Basin Hopping to solve the problem of packing equal and unequal circles within a circular container with minimum radius. Extensive computational experiments have been performed both to analyze the problem at hand, and to choose in an appropriate way the parameter values for the proposed methods. Different improvements with respect to the best results reported in the literature have been detected.

Keywords

Circle packing Monotonic basin hopping Multistart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addis B., Locatelli M., Schoen F.: Efficiently packing unequal disks in a circle. Oper. Res. Lett. 36(1), 37–42 (2008)CrossRefGoogle Scholar
  2. 2.
    Addis B., Locatelli M., Schoen F.: Disk packing in a square: a new global optimization approach. INFORMS J. Comput. 20, 516–524 (2008)CrossRefGoogle Scholar
  3. 3.
    Birgin E.G., Sobral F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35, 2357–2375 (2008)CrossRefGoogle Scholar
  4. 4.
    Boll D.V., Donovan J., Graham R.L., Lubachevsky B.D.: Improving dense packings of equal disks in a square. Electron. J. Comb. 7, R46 (2000)Google Scholar
  5. 5.
    Casado, L.G., García, I., Szabó, P.G., Csendes, T.: Equal circles packing in square II—new results for up to 100 circles using the TAMSASS-PECS Algorithm. In: “Optimizarion Theory; Recent Developments from Mátraháza. Applied Optimization Book Series, Vol. 59, pp 207–224, Kluwer Academic Publishers (2001).Google Scholar
  6. 6.
    Castillo I., Kampas F.J., Pinter J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)CrossRefGoogle Scholar
  7. 7.
    de Groot, C., Peikert, R., Würtz, D., Monagan, M.: Packing circles in a square: a review and new results, System Modelling and Optimization, Proceedings of 15th IFIP Conference, Zürich, 45–54 (1991)Google Scholar
  8. 8.
    Graham R.L., Lubachevsky B.D.: Repeated patterns of dense packings of equal disks in a square. Electron. J. Comb. 3, 1–16 (1996)Google Scholar
  9. 9.
    Gill P.E., Murray W., Saunders M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002)CrossRefGoogle Scholar
  10. 10.
    Grosso A., Locatelli M., Schoen F.: A population based approach for hard global optimization problems based on dissimilarity measures. Math. Program. 110(2), 373–404 (2007)CrossRefGoogle Scholar
  11. 11.
    Hifi M., M’Hallah R.: Adaptive and restarting techniques based algorithms for circular packing problems. Comput. Optim. Appl. 39, 17–35 (2008)CrossRefGoogle Scholar
  12. 12.
    Huang H., Huang W., Zhang Q., Xu D.: An improved algorithm for the packing of unequal circles within a larger containing circle. Eur. J. Oper. Res. 141, 440–453 (2002)CrossRefGoogle Scholar
  13. 13.
    Huang, W., Li, Y., Jurkowiak, B., Li, C.M., Xu, R.C.: A two-level search strategy for packing unequal circles into a circle container. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming, pp. 868–872. Springer, Berlin (2003)Google Scholar
  14. 14.
    Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles, J. Glob. Optim. (2008, in press). doi:10.1007/s10898-007-9274-6
  15. 15.
    Leary R.H.: Global optimization on funneling landscapes. J. Glob. Optim. 18, 367–383 (2000)CrossRefGoogle Scholar
  16. 16.
    Lee J., Scheraga H.A., Rackovsky S.: New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J. Comput. Chem. 18(9), 1222–1232 (1997)CrossRefGoogle Scholar
  17. 17.
    Locatelli M., Raber U.: Packing equal circles in a square: a deterministic global optimization approach. Discrete Appl. Math. 122, 139–166 (2002)CrossRefGoogle Scholar
  18. 18.
    Lourenco H.R., Martin O., Stützle T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds) Handbook of Metaheuristics, pp. 321–353. Kluwer, Norwell (2002)Google Scholar
  19. 19.
    Markot M.C., Csendes T.: A new verified optimization technique for the “packing circles in a unit square” problems. SIAM J. Optim. 16, 193–219 (2005)CrossRefGoogle Scholar
  20. 20.
    Mladenovic N., Plastria F., Uroevi D.: Reformulation descent applied to circle packing problems. Comput. Oper. Res. 32, 2419–2434 (2005)CrossRefGoogle Scholar
  21. 21.
    Nurmela K.J., Oestergard P.R.J.: More optimal packings of equal circles in a square. Discrete Comput. Geom. 22, 439–457 (1999)CrossRefGoogle Scholar
  22. 22.
    Nurmela K.J., Oestergard P.R.J.: Packing up to 50 equal circles in a square. Discrete Comput. Geom. 18, 111–120 (1997)CrossRefGoogle Scholar
  23. 23.
    Packomania web site maintained by Specht, www.packomania.com
  24. 24.
    Pintér J.D., Kampas F.J.: Nonlinear optimization in mathematica with mathoptimizer professional. Math. Educ. Res. 10, 1–18 (2005)Google Scholar
  25. 25.
    Stoyan Y., Yaskow G.: Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5, 45–57 (1998)Google Scholar
  26. 26.
    Stoyan Y.G., Yaskov G.N.: A mathematical model and a solution method for the problem of placing various-sized circles into a strip. Eur. J. Oper. Res. 156, 590–600 (2004)CrossRefGoogle Scholar
  27. 27.
    Szabó P.G., Markót M.C., Csendes T.: Global optimization in geometry-circle packing into the square. In: Audet, C., Hansen, P., Savard, G. (eds) Essays and Surveys in Global Optimization, pp. 233–266. Kluwer, Dordrecht (2005)CrossRefGoogle Scholar
  28. 28.
    Szabó P.G., Markót M.C., Csendes T., Specht E., Casado L.G., Garcia I.: New Approaches to Circle Packing in a Square, Optimization and Its Applications. Springer, Berlin (2007)Google Scholar
  29. 29.
    Wales D.J., Doye J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)CrossRefGoogle Scholar
  30. 30.
    Wang H., Huang W., Zhang Q., Xu D.: An improved algorithm for the packing of unequal circles within a larger containing circle. Eur. J. Oper. Res. 141, 440–453 (2002)CrossRefGoogle Scholar
  31. 31.
    Zhang D., Deng A.: An effective hybrid algorithm for the problem of packing circles into a larger containing circle. Comput. Oper. Res. 32, 1941–1951 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • A. Grosso
    • 1
  • A. R. M. J. U. Jamali
    • 2
  • M. Locatelli
    • 1
  • F. Schoen
    • 3
  1. 1.Università di TorinoTurinItaly
  2. 2.Department of MathematicsKhulna University of Engineering and TechnologyKhulnaBangladesh
  3. 3.Dip. Sistemi e InformaticaUniversitá di FirenzeFirenzeItaly

Personalised recommendations